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Summary 

Broad bandwidth represents one of the features 
the most sought after in electron tubes. In linear ac- 
celerators, it ensures the insensitiveness of the 
RF-structure to mechanical error or beam loading. This 
is commonly achieved by increasing the coupling between 
accelerating cells. To go further however, coalescence 
between two passbands or more is being used. The post- 
coupled Alvarez structure, the side-coupled or resonant 
slot-coupled cavity chain, as well as the dish-and- 
washer structure, among others, are well known 
examples. More generally, coalescence can take place in 
complex RF-structures such as multiperiodic systems. 
Presently, the use of mode coalescence is extended to 
certain types of RF-structures in TWTs in order to 
avoid band-edge oscillations. The purpose of this paper 
is to derive rules that mode coalescence obeys. 
Examples will be given for illustrations. 

Introduction 

In this paper we will discuss the coalescence 
mechanism in RF-structures for Linacs or broadband 
electron tubes. By definition, coalescence appears when 
there is degeneracy between two orthogonal modes. 

It may occur that coalescence is an intrinsic 
property of a periodic structure as in the interdigital 
structure in the symmetrical case, which can be seen as 
an interlaced two-circuit system. Sometimes, in cross- 
field tubes, by a design need such as cooling require- 
ments, the interdigital structure must be buiLt 
assymmetrical ; coalescence is then realized by appro- 
priate dimensioning. 

In general, coalescence is a situation mostly 
sought after for the following purposes : 

- field Elattening in long accelerating cavities 
- bandwidth broadening in electron tubes 
- oscillation damping in broad-band amplifiers. 

The first two purposes are well known, the third 
is only recently applied to very broad band circuits. 

It is known that amplification can only take 
place when the velocity of the RF-wave exhibits a cer- 
tain drag compared to the electron beam velocity (there 
is then transfer of energy from beam to circuit). If 
the bandwidth of an amplifier is wide enough, the 
straight line representing electron velocity in the 
(w, B) plane (figure la) and an edge of the pass-band 
may come close enough to favor oscillations. There are 
two reasons for that : i) at a band edge, the disper- 
sion curve is usually very flat, making the velocity 
condition of oscillation very easy to satisfy ; ii) be- 
cause coupling impedance increases as the inverse of 
the group velocity, which is null at the edge, losses 
are insufficient to damp oscillation growth. 
Coalescence will improve this situation, figure lb. 

The coalescent modes are orthogonal, in the 
sense that if one mode is well coupled to the electron 
beam and hence is dangerous, the other has no effect on 
the beam. Therefore, if coalescence is surpassed so 
that dangerous modes are thown over the upper side of 
th; velocity straight line, oscillations are suppres- 

, figure lc. 

We will first try to derive the rules coalescen- 
ce must obey and then discuss how to use them to syn- 
thetize circuits. 

Two Circuit System 

Coalescence takes place only when at least two 
circuits are coupled together. We consider this simple 
case first. The equations of propagation can be written 
as : 

i 

A 4~1 + kl* 61 + D12 4~2 = 0 

111 
A $2 + k2* $2 + D21 $1 = 0 

The scalars kl* and k22 are the eigenvalues of 
the uncoupled circuits, R is a second order operator, 
and Dl2 and D21 are two first order operators represen- 
ting coupling between circuits. If these latter are 
supposed to be made of discrete resonating cells, sepa- 
rated by equally discrete coupling elements, i.e when 
the phase shifts are assumed to vary stepwise through 
the coupling hole, the coupled system can be represen- 
ted by two interlaced systems as shown in figure 2. The 
graph has either a square- or a treillis-shape depen- 
ding on the field symmetry, or parity, in the cell at 
the considered mode . E, equal to + 1 or -1, accounts 
for the sign of the coupling coefficient (-1 for cou- 
pling between graphs of different parity and + 1 for 
same parity) and g, for the dissymmetry of the coupling 
on each side of the cell (g = 1, when coupling to the 
left is identical to coupling to the right and g # 1 
otherwise). Coupling coefficients are represented by 
the scalars f12 and f21 which, in general, are neither 
equal nor of the same sign. In these conditions, A, D12 
and D21 can be written in the following finite diffe- 
rence forms, where n is the cell number : 

1 

W(n) = ; [4J(*-1) + G(n+l) - Q(n)1 

D12 (62.(n) = f12 [EC? $*(n-l) + G*(n)1 PI 

D-21 91(n) = f21 [@l(n) + Eg cLl(n+l>l 

Note that if instead of being interlaced the 
circuits are coupled in parallel, the D's are reduced 
to pure scalars. 

Before solving Eqs. [1] and [ZJ, let's consider 
the uncoupled system, i.e., f12 = f21 : 0. Applying 
Floquet's theorem, one has : 

+(n * 1) = b(n) exp ('i jSL), ]31 

where bL is the phase shift of one period. Eq. [1] gi- 
ves two uncoupled solutions ~1 and $2 with : 

i' 

Fl(w) : cos SlL = 1 - kl* (w) 
]41 

F*(o) Z cos S2L = 1 - k22 (u) 

Fl(w) and F~(IJ) are defined as the dispersion 
functions of the uncoupled system and are assummed to 
be known. 
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If the dispersion function of the coupled system 
is defined as F(w) E cos BL, the" by using definition 
(4), Eq. [l] gives the following homogenous system : 

F(w)-Fl(w) 

( 

f12 [a exp(NL)+ll cLl(“) 

fzl [l + Eg exp(-jSL)] 
>( 1 

= 0 [5] 

F(o)-F2(w) rG2(“) 

where F(U), $1 and +2 are unknown. By cancelling the 
determinant of Eq. [5], a second degree equation in 
F(o) is obtained, giving two solutions F+ and F- : 

F&)$(Fl+F2)+~gf 
. 

f /(FL-F2)4f[fgL+Eg(Fl+F2)+l+g') 
-4-- 

[61 

where f = f12 f21. Thus the coupling coefficients ap- 
pear only in the form of their product. The ratio of 
the amplitudes $l/G2 can be calculated easily. 

Relation [6] gives the composition rule. Without 
further precisions on the parameters, certain conclu- 
sions can be draw", in particular, on the coalescence. 
It is known that coalescence occurs when the dispersion 
curves join each other at zero- or x-mode with "onva- 
nishing group velocity. 

After the definition of F(w), one has : 

! dF 
dw = - sin EL = dw 

i $ = - cos 3L (L $)2 - d28 sin f3L L -&--J 

hence, at the coalescent point, 

F=*l 

dw 
vg = T 

By differentiating [6] one has : 

d# 1 _=- 
dw 2 11 l $1 &(Fl+F2) + 

fEg * *fg2+l+g2+cg(Fl+F2)] df 

2J--- 
dw 

[71 

[81 

[91 

where Jr stands for the term under square root sign of 
Eq-[61 - 

Eq. [8] are satisfied if the three terms in 
brackets of Eq. [9] vanish simultaneously, giving a 
sufficient condition : 

g=l 
[lOI 

Fl = F2 = F = -E 

As a result, if the coupling is identical at 
both sides of the cell, i) coalescence occurs at n-mode 
(F- = -1) when fields in the cells are of the same pa- 
rity and ii) at zero-mode (F+ = 1) when fields in the 
cells are of different parity. 

Other interesting properties of the dispersion 
curves can be derived from Eq. [9]. In particular, at 
the frequency that cancels the term under the square 
root sign, the branches F+(w) and F-(w) join each other 
with vertical slope. According to whether the common 

( 

L D12 D13 . . . 

D21 L D23 . . . 

) 

iJJ=o (111 

D31 D3* L . . . 

value of F& at this point lies in the interval I-1, + 
1) or not, the dispersion curve has or not a zero group 
velocity in the pass-band. 

Different situations are shown in figure 3a and 
3b. The case of zero group velocity lying in the pass- 
band is observed in many cases, particularly in fnter- 
digital structuresI, in iris-loaded deflecting 
structures: and also in disk and washer (DAW) 
structures . This phenomenon depends mainly on the 
value of the coupling coefficient. Let's consider a 
simple case where Fl(w) Z F*(w) (case of the interdigi- 
tal structure or of the DAW structure, when the uncou- 
pled disk- and iris- structures have, for certain disk 
and iris dimensions, identical dispersion curves). The 
common value of F+ is (-l+$f)c, where f is positive, as 
fI2 = f21 x ; therefore, if the coupling is made small 
enough (f<4), the group velocity can be zero inside the 
pass-band. Of course, this situation must be avoided 
because of the poor mode separation and, more impor- 
tant, because of the high risk of band-edge oscilla- 
tions in amplifier electron tubes. 

System of More Than Two Circuits 

Though, in general, analytical solutions cannot 
be easily obtained, the coupled equations have the same 
forms : 

where L = h + k*. If circuits are ranked following the 
frequency range of their pass-bands, coupling can be 
neglected between non adjacent bands and the matrix be- 
comes sparse enough to be treated easily. Anyhow, lo- 
cally, the rule stated for a two-circuit system 
remains valid. 

Let's consider the three circuit case. Figure 4 
shows how the bandwidth can be broadened by coalescence 
between the main circuit no. 2 with the two coupling 
circuits no.1 and no. 3. The first coalescence occurs 
at x-mode and the second, at zero- or 2x-mode. From 
these simple rules, methods can be derived for the des- 
ign of broad-band circuits. 

Some Examples of Mode Coalescence 

Two well known examples are given by the bi- 
periodic side-coupled structure and the post-coupled 
drift tube structure. I" the first case, the modes in 
the accelerating cell and in the coupling cell are of 
the same TMOl-type, hence, the coalescence will take 
place at x-mode as one knows. In the second case where 
coalescence takes place at zero-mode, it can be veri- 
fied that the field excited by two adjacent stems has 
an odd pattern (longitudinal electric field is zero at 
the middle of the cell) whereas the TOOL-field in the 
drift tube cell is obviously eve". 

Another example is given by a cavity chain cou- 
pled with resonant slots. It is known that coalescence 
can take place only at zero-mode and if adjacent slots 
are alternating with 180" rotation. Note that condition 
[lo] is only sufficient, that means, it ensures coale- 
scence only when coalescence is possible or, in other 
words, when it is possible to excite orthogonal modes 
in the circuits. In the case of aligned resonant slots 
for example, any kind of coalescence can be realized. 

We now consider the coalescence of the 
DAN-structure shown in figure 5 in is simplest shape. 
It can be seen as an interlacing of an iris-loaded 
structure and its dual disk-loaded structure. Patterns 



of the two n-mode orthogonal fields are shown. One can 
see that the broken line field is excited by the irises 
only and is not perturbed by the disks, wh;ireas the so- 
lid line field is excited by the disks only and is not 
perturbed by the irises, provided of course that the 
disks and irises are Cnfinftely thin. Note that each 
field is built up by a couple of orthogonal houndary 
conditions, as better shown in figure ha. In this case, 
the two TX01 fields are excited either with Neuman 
conditions on the left with Derichlet conditions on the 
right (ND) or vice versa (DN). Of course coalescence 
occurs when the two frequencies are equal. This example 
is chosen to show that the orthogonal modes need not 
necessarily be of the same type. If indeed the cell 
length is small enough (figure bb), the frequency of 
the DN-TM01 becomes so high that coalescence is no lon- 
ger realized between two TM01 fields but between a 
ND-TM01 and a DN-TXOZ. 

The last example is intended to show how to syn- 
thesize a periodic structure for a given dispersion 
curve using the coalescence mechanism. Suppose one has 
to realize a dispersion curve as shown in figure 4, 
curve no. 4, such that it remains close to a straight 
line in a frequency range as large as possible. The so- 
lution could be a three-circuit system. As stated by 
the rule, if the main circuit has an accelerating even 
field, the high frequency coupling circuit must have an 
odd field and the low frequency one, an even field as 
the main circuit. In the structure shown in figure 7, 
high frequency coupling is achieved by resonant slots 
and low frequency coupling by side cavities. Curves 1, 
2 and 3 in figure 4 show three dispersion curves cor- 
responding to the three circuits before and after coa- 
lescence. 

Note that, to convert the forward-wave disper- 
sion curve no. 4 of figure 4 into a backward-wave cur- 
ve, one has only to interchange the frequencies of the 
coupling circuits, by opening the slots and decreasing 
the volume of the side cavities. The slope of the dis- 
persion curve no. 2 of the main circuit also changes 
its sign due to the enhanced coupling of the enlarged 
slots. 
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Figure 1 - Band-edge oscillation suppression by mode 
coalescence 
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Figure 2 - Two-circuit system 
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Figure 3 - Coalescence rule . 
Field of same parity : a-mode coalescence 
Field of different parity : O-mode 
coalescence 
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Figure 4 - Dispersion curve of a three-circuit system 
at coalescence 
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Ftgure 5 - Odd and even r-modes of DAW 
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Figure 6 - Node coalescence in DAW 

Figure 7 - Three-circuit broad-band structure 


