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Summary 

The mathematical background for a multiport- 
network-solving program is described. A method for 
accurately numerically modeling an arbitrary, contin- 
uous, multiport transmission line is discussed. A 
modification to the transmission-line equations to 
accommodate multiple rf drives is presented. An im- 
proved model for the radio-frequency quadrupole (RFQ) 
accelerator that corrects previous errors is given. 
This model permits treating the RFQ as a true eight- 
port network for simplicity in interpreting the field 
distribution and ensures that all modes propagate at 
the same velocity in the high-frequency limit. The 
flexibility of the multiport model is illustrated by 
simple modifications to otherwise two-dimensional sys- 
tems that permit modeling them as linear chains of 
multiport networks. 

Introduction 

The transmission-line model has contributed much 
toward understanding the azimuthal and longitudinal 
field-distribution properties of the RFQ accelerator 
and has been a useful guide for developing tuning pro- 
cedures. Until the appearance of a program by Ron 
Hutcheon of Chalk River,' much of the effort toward 
understanding RFQ rf properties was analytical and 
qualitative. Hutcheon's program calculates the field 
distribution for an RFQ with parameters that are arbi- 
trary continuous functions of the longitudinal coordl- 
nate by numerically integrating the transmission-line 
equations for a six-port transmission line. 

The program described here uses the ZN-port 
chain-matrix accelerator-modeling technique deveioped 
at Los Alamos.z This method facilitates the inclusion 
of discrete components, multiple rf drives, and rf 
power losses. In addition, the code is not limited 
to a particular model or to the RFQ structure. It can 
be used for any structure that may be modeled as a 
chain of ZN-port networks and transmission lines. One 
restriction is that transmission lines with continu- 
ously varying parameters must be represented by a 
series of uniform line segments, approximating the 
desired variation in parameters. 

The Matrix Representation 

In the chain-matrix representation, a network 
with 2N ports is considered to have N input ports and 
N output ports. The matrix M that relates the volt- 
ages and currents at the output ports to the voltages 
and currents at the input ports is the chain matrix 
of the network. In the notation used here, the volt- 
ages and currents are represented by a ZN-vector am- 
plitude. The first N elements of the vector are the 
voltages at a set of N ports and the second N elements 
are the corresponding currents. Thus, for example, 
the i-th amplitude vector will be 

“i 
0. Ii 

(1) 

It is convenient to consider the matrix M to be com- 
posed of the NXN submatrices A, B, C, and 0: 
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(2) 

These conventions result in the equations for a 
ZN-port network being analogous to the two-port case 
with the individual variables and parameters replaced 
by vectors and matrices. 

With this analogy in mind, we will write, without 
further justification, the matrix transmission-line 
equations for a 2N-port network: dV/dx = ZI and 
dI/dx = YV. Here Z is the series impedance per unit 
length, and Y is the shunt admittance per unit length. 
Both 2 and Y are 2NX2N symmetric matrices. 

Our conventions are that the input ports are on 
the right, the output ports on the left, the trans- 
mission line extends in the -x direction, and the cur- 
rent is positive when it flows to the right (the tx 
direction). 

To develop the chain-matrix method for a contin- 
uous transmission line, we consider the difference 
equations corresponding to the transmission-line equa- 
tions. If we write these equations in the form that 
relates the vector amplitude at x + 6x to the ampli- 
tude at x, we get the chain-matrix representation for 
an increment of line of length bx. 

( 1 + ZY&X2/2 Z&X + ZYZ&X3/4 

Y&X 1 + YZ6X2/2 > 
(3) 

The order of the terms, in powers of dx, has been 
chosen so that the determinant of the matrix is equal 
to 1, as required for conservation of energy. The 
matrix above is equivalent to a T-network with series 
impedance 0.5 7.8~ and shunt admittance Ybx. 

Although the transmission-line equations are for- 
mally integrable, it is more useful for numerical 
analysis to let dx be small but finite. If we choose 
bx = k/n, we can approximate the matrix for a contin- 
uous line of length k by calculating M(e/n)". 

For a sufficiently small 6x, this expression will 
yield a satisfactory result for the matrix of the 
finite-length transmission line. However, there will 
be a lower limit on the size of dx because of trunca- 
tion errors in computer arithmetic. In addition, for 
small bx, the number of matrix multiplications can be- 
come impractically large. To improve the speed of 
calculation while allowing a small increment dx, we 
have chosen n to be an integer power of 2. Then, the 
matrix for the finite-length transmission line can be 
calculated by a series of squaring operations and the 
number of matrix multiplications becomes log2(n). 

Other components of the accelerator structure, 
such as shorting rings and end tuners, can be repre- 
sented by combinations of discrete elements of series 
impedance and shunt admittance. The discrete model 
is useful for components with lengths short compared 
to a wavelength. Any linear combination of discrete 
and distributed elements can be combined by matrix 
multiplication to determine the matrix for a complete 
rf structure. For example, the combination of ele- 
ments illustrated in Fig. 1 has an overall matrix. 

To solve the amplitude distribution problem, 
boundary conditions, including an rf drive if losses 
are present, are applied and the matrix equation is 
solved for the unknowns. Take the example of Fig. 1 
with short-circuit boundaries at both ends and a volt- 
age drive VD at the left end. The matrix equation is 
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(;:)= M *(;,j=(; ;)(;,)=(;: : ;j . (4) 

Solving for the unknown current vectors yields 

VO, 

Fig. 1. Chain of eight-ports with short 
circuit boundaries and voltage drive. 

IO = B-' . VD , and In = D . ID = D . B-' . VD . (5) 

M = M, l M,-1 . . . M2 * M, . 

where B-l is guaranteed to exist if the input ports 
are actually connected to the output ports through 
finite impedances and nonzero admittances. After 
solving for the boundary currents, the intermediate 
amplitudes may be calculated: 

(:‘)= M,(yo) (:i)= M2- Ml (y,) etc. (6) 

For a lossless network, the voltage drive VD must 
be zero. The equations are then solved for the eigen- 
frequencies (modes) of the network before the relative 
amplitudes can be calculated. The ZN-port program as- 
sumes that there will always be losses that are due 
to resistive components in some or all of the net- 
work's elements. Thus, for any finite drive, there 
will always be a finite response whose phase with re- 
spect to the drive depends on the drive frequency rel- 
ative to the modes of the structure. The program re- 
quires some definition of resonance to find a mode. 
The usual method for one drive is to require that the 
response at the drive port be in phase with the drive. 
For multiple drives, a more sophisticated definitton 
of resonance is required. This problem has not been 
resolved yet. 

For the single-drive case, Newton's method is 
used to find the zero in the phase difference between 
the drive and the response to a specified accuracy. 
If the initial guess for the mode frequency is reason- 
able, the program will converge rapidly because the 
phase is a nearly linear function of frequency near 
resonance. Alternatively, if no good estimate of the 
frequency exists, the program can solve for the drive 
response as a function of frequency over a range of 
frequencies with a specified step size. The latter 
mode of operation is called the scan mode, the former 
is the lock mode. 

In the case of multiple drives, not only is the 
resonance criterion more difficult to specify, but the 
matrix equations become considerably more complex. 
Consider the general network shown schematically in 
Fig. 2. Here, there is the possibility of a voltage 
and/or current drive at every junction. Drives at the 
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Fig. 2. Chain of ZN-ports with 
drives at every junction. 

ends are treated as drives at the zero-th and n-th 
junctions. The matrix equation is written 

+M . 2 Dl +M1 

7) 

where Dk is the k-th drive vector. Expanding the 
products to remove all parentheses yields 

= On + M,D,-, + MnMn-1Dn-2 + . . . + M,M,-, . . . M2D1 

(8) 
+ M,M,-, . . . M2'-',D0 + M,M,-, -. MzM1 

which can be abbreviated to 

'n "D oi) vO 
In = ID + Mn"n-l ." M2"l IO 

0 

or (:i)= 1: +(: :)i::i , 

where VD, ID is a net drive vector consisting of all 
but the rightmost term of the above equation. The 
drive vectors are considered to be either shunt- 
current sources or series-voltage sources. Thus, an 
open boundary should be associated with each current 
source on either end, and a short-circuit boundary 
should be associated with voltage sources on the ends. 

If the boundaries are shorts at both ends, the 
new equation can be solved: 

IO = -B-1 . VD , and I, = ID - D . 8-l * VD . - 

If the boundary conditions differ from this as- 
sumption, the problem is reduced to the same form by 
rearranging the vectors so that the amplitude compo- 
nents that are forced to zero are the top N elements 
of the vectors. The rows and columns of the matrix 
are then transformed accordingly. After the solution 
for the unknowns on the ends has been found, the vec- 
tors and matrix are restored to their normal order and 
the intermediate amplitudes are calculated. 

The Proqram 

At this time the program only exists conceptu- 
ally. There will be a front-end program that will 
format the input data from specific models that will 
be developed as needed. The data for the network will 
conscst of lists of matrix elements for several com- 
binations of series and shunt resistance, capacitance, 
and inductance. Elements of length zero will be taken 
to be discrete. Nonzero length elements will be con- 
sidered to define an infinitesimal element of a con- 
tinuous line. The continuous line will be calculated 
as though it consisted of a finite number of symmetric 
T-networks as discussed above. 



The series and shunt elements will be thought 
of as either normal or "inverted." A normal ele- 
ment would be a series RLC combination for a series 
impedance, or a parallel RLC for a shunt admittance. 
The inverted form would assume a parallel RLC for a 
series element, or a series RLC for a shunt element. 
Series elements will be specified by matrices of R, 
L, and S (= c-l), whereas shunt elements will be 
specified by matrices of G (= R-l), B (= L-l), and C. 

A discrete element may consist of one matrix 
each of either R, L. and S, or one each of G, B, 
and C. A distributed network requires at least one 
of R, L, and S and at least one of G, B, and C. 
Ordinarily there will not be resistive components 
alone in a distributed network. Not all matrices 
need be present if the above conditions hold. All 
matrices will be saved in a large multidimensional 
array. Each element will have a pointer array that 
locates the data making up the network element. The 
data set consists of a list of all the values, along 
with identification words to define the data. Each 
element of the network follows in succession. 

Interspersed between the elements will be 
drive vectors and output flag vectors. These will 
also be pointed to by the pointer array for each 
element. The output flag vector will be used to 
determine if a plot or listing of a particular 
amplitude component is desired at the end of the 
calculation. If amplitudes at points within a 
continuous transmission line are desired, the line 
will have to be broken into segments with a 
junction at each desired point. 

Transmission Line Models 

The shunt element for the RFQ is similar to the 
one proposed in earlier papers.3 However, to treat 
the RFQ as an eight-port network for retention of 
the structure symmetry in the calculations, it is 
necessary to modify the model by adding a small 
shunt capacitance from each vane tip to the ground 
reference. This introduces a zero mode in the azi- 
muthal direction. There are then four azimuthal 
modes described by the model, the quadrupole, two 
dipole, and the zero as required for a general 
eight-port network. If the capacitance is small 
enough, there will be no significant effect on the 
calculated field distribution. If there is no shunt 
capacitance, the problem is incalculable without re- 
verting to the unsymmetrical six-port representation. 

For a TE-mode transmission line, the series im- 
pedance is determined completely by the shunt admit- 
tance and the requirement that all modes propagate at 
the same velocity in the infinite frequency limit. 
In the case of the RFQ, we require that the series- 
inductance matrix L be given by L = c-z C-l. In the 
case of a TM mode, an analogous expression relates 
the shunt capacitance to the series inductance. 

The calculation of the series impedance must be 
performed by the front-end program because it depends 
on the exact model being used. Figure 3a shows the 
general RFD shunt element. Figure 3b shows the cor- 
responding series element. The mutual inductances 
arise from the requirement that all modes propagate 
at the same velocity in the high-frequency limit. 

The flexibility of the EN-port method is illus- 
trated in Fig. 4 showing an RFQ with a resonantly cou- 
pled manifold. The coupling resonators are accommo- 
dated by treating them a': a chain of coupled resona- 
tors that are also coupled to the manifold and an RFQ 
quadrant. By making the coupling between adjacent 
resonators weak enough, the model approaches the case 
of uncoupled resonators, which cannot otherwise be 
handled in the context of a pure chain of ZN-ports. 

(a) 
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Fig. 3a. Shunt admittance element for RF0 structures. 
Fig. 3b. Series impedance element for RFQ structure. 
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Fig. 4. RFQ with resonantly coupled manifold. 

It is even possible to accommodate the coupled 
accelerator-decelerator as used in the free-electron 
laser energy-recovery experiment by a suitable contor- 
tion of the topology as shown in Fig. 5. 
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Fig. 5. Resonantly coupled accelerator- 
decelerator model. 

Conclusion 

The principles of a program for calculating the 
field distributions and tuning sensitivities for mod- 
els of accelerator structures that can be expressed as 
linear chains of ZN-port networks has been described. 
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