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Abstract 

The standard paraxial ray equation method 
cl1 for the design of electrodes for an electrostat- 
ically focused gun is extended to include relativ- 
istic effects and the effects of the beam’s azimuthal 
negnetic field. Solutions for parallel and converging 
beams are obtained and the predicted currents are 
compared against those measured on the High Bright- 
ness Test Stand [2]. 

Introduction 

A well known technique for designing 
electrostatically focused guns makes use of the 
paraxial ray equation [1,3]. Essentially, a dif- 
ferential equation of motion is derived which gives 
the behavior of the beam envelope in terms of the 
second derivative of the potential with respect to 
the longitudinal coordinate. The desired behavior of 
the beam envelope in the longitudinal direction is 
prescribed and the equation is used to solve for the 
potential distribution consistent with that envelope 
specification. The solution is then used to set the 
potentials of the accelerating electrodes and their 
spacings. This technique is extended in the present 
work to include effects due to the beam’s azimuthal 
magnetic field and relativity. 

Method of Analysis 

We consider an azimuthally symmetric system 
and consider only static fields. Additionally, we 
neglect any azimuthal component of velocity of the 
beam electrons. Thus, we may write a complete set of 
equations which govern the motion of the electrons 

; . 2 = 4lTp 

& (ymt) = -e(Z +i x $) 

(y - 1) mc 
2 =4. 

Equations (1) and (4) yield 

i & (rE,) = 4nI) + e 
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while Eq. (2) yields Be = ZI,/cr where I,.the 
enclosed current at radius r is given by 

Zrr’dr’JZ (r’) 
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and J, = pv, = PcI?,, the z-component of the current 
density. Setting dt = dz/v, = dz/c6, the radial 
component of Eq. (3) can be written as 

“C2B 
z k (%y 2) = -e(Er-BZRS) . (7) 

We now introduce the paraxial approxima- 
tion which requires that 6, << B, so that B 2 
If in addition, ~~6,~ << 1 then y* z~ (l-6,*)-1 

6,. 

and Eq. (7) may be written as 

mc28 $g (yt3 g) = -e(Er-BBe) . (8) 

We now make the further simplifying 
assumption that the beam profile is flat, i.e. 
p(r) = constant. 
a*e/a,* 

We also approximate t?(r) and 
by their values at r = 0. With these 

assumptions E, may be evaluated from Eq. (6) as 

2ll r.J 
E =-A+~ 

r RC 2 

where the prime denotes >/a~. We may also find 
Ir and hence Be. Using these results, Eq. (5) and 

the fact that By =p--Y- we may rewrite Eq. (8) as 

+ j--[fYg] =-r[Io~~J~, + 111 

where I, = mc3/e 5 17 kA. 

Parallel Beam 

(9) 

We now consider the case of a parallel beam 
where aria2 = 0. Equation (9) then immediately 
simplifies to 

4rrJ 
y” + 7. 

r =o . IoY Y2 - 1 
If L is the anode-cathode gap distance then we may 
define a new independent vatiable 5 as z/L. Then 
we may write the above equation as 

y”- a =() , 

YY2- 1 
r- 

where a = -~~J,L*/I, and where a prime now denotes 
differentation with respect to 5. A first integral 
of this equation is 

- a set -l=c . 

If we now impose boundary conditions appropriate for 
space charge limited flow, namely y(O) = l,y’(O) = 0 

and y(l) = y. we have 
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(10) 

where 3 is given by Eq. (10) evaluated at < = 1 
with y = yo . y vs. 5 is plotted in Fig. 1. With 
c( determined Jz is immediately given as 
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Fig. 1. Solution to Eq. (10). v is plotted 
vs.+ 5. 

Exponentially Converging Beam 

If r(s,z) = r,(s)e”a where s labels the 
radius at the cathode then we have vr = dr/dt 
= -ctroe*s dz/dt = --c(rvx. Thus, Jr = ovr = -arJ,. 
Again, we take p and 8 to be their on-axis values. 
Thus, .I, = J,(z) and d . J’= 0 gives 

k& (rJr) 

with the solution J, = Joezaz. 

Equation (9) now becomes 

4srJo e 
2crz 

y” + 

IoY Y2 - 1 J- 

If we define 5 E ~1s and h E 4 ~J,/T, a2 
we have finally that 

y” - 2y’ + 2(v2 - 1) + Ae*’ = o 
Y 

. 

%I---- 

(12) 

YY*-l 

Again, we choose boundary conditions appropriate to 
space charge limited Elow: y(0) = 1, y’(O) = 0 
and ~(5~1 = y. where a prime now denotes differenta- 
tion with respect to c. Equation (12) along with 
its three boundary conditions is an eigenvalue 
problem for the parameter h. A value of X is 
assumed and Eq. (12) is integrated from c = 0 
to 5 = co. If the boundary condition y = y. is not 

satisfied at 5 = Co then a new value of 1 is chosen 
and the entire procedure repeated until the unique 
value of X is found that permits the satisfaction 
of all three boundary conditions. Jo is then found 
from the relation 

I a2X 
J =A-..- . 

0 4n (13) 

A plot of the solution to Eq. (12) is given in Fie. 2. 
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Fig. 2. Solution to Eq. (12) corresponding to the 
values used as a design example in the text. The 
solution here is for the additional boundary 
condition y’(So) = 0 which essentially determines 

50 and hence the parameter a. y vs. 5 is olotted. 

Design Examples 

Two examples corresponding to different 
designs of the electron gun of the High Brightness 
Test Stand are now discussed [2,4]. The first 
example is the design of a pentode structure for a 
parallel beam. The four voltage differences between 
the five electrodes are required to be equal. The 
problem then reduces to solving Eq. (10) for the 
location of the four equally graded accelerating 
electrodes with respect to the cathode. 

The design used a cathode diameter of 
1 - l/8 inches (1.43 cm radius) and an anode-cathode 
gap of 1.95 inches (4.95 cm) with a peak anode 
voltage of 1.25 MV. From Fig. 1 CI is found to be 
3.21. Using Eq. (11) to obtain the current density, 
the calculated beam current ~r,*Js, is found to be 
1.18 kA as compared to the experimentally determined 
value of xl.25 k.4. The interval y. - 1 is divided 
into four equal parts corresponding to the four 
accelerating electrodes and the positions of those 
electrodes read from Fig. 1. With the value of N 
known the actual locations of the electrodes are 
determined as: cathode at z = 0, first electrode at 
z = 1.54 cm, 2nd electrode at 2.77 cm, third 
electrode at z = 3.82 cm and anode at z = 4.85 cm. 

The second example is that of a converging 
beam produced by a simple diode configuration. The 
cathode used in this design is a concave thermionic 
emitter of radius 4.46 cm. The axial anode-cathode 
gap is 15 cm and the peak anode voltage is 1.25 MV. 

An additional requirement was imposed on the 
solution of Eq. (12) for this design; namely that 

Y ’ = 0 at the anode location. This requirement 
would result in a convergent beam at the anode with 
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no axial electric field present which presumably 
would be more easily transported by solenoids 
downstream of the anode. This fourth condition on g 
the solution of Eq. (12) essentially determines a, 
the convergence parameter. This problem has a 
solution for the non-relativistic case when the self 
magnetic field of the beam is neglected [ll. The 
fully relativistic case including the self magnetic 
field also may be solved and is shown in Fi 

P’ 
2. 

X is determined to be -.238 and CY = 2.1 cm- . 
The current density expected is found from Eq. (13). 
Multiplication by the cathode area gives 396 amperes 
as the expected diode current. The beam radius 
converges from an initial value at the cathode of 
4.46 cm down to .546 cm at the anode. We find that 
r’ at the edge of the cathode is .625 hence the 
paraxial approximation is not well satisfied. The 
diode was tested as designed with the exception that 
the curvature of the cathode was not in accord with 
the requirements of the solution to Eq. (12). Only 
~200 amps could actually be transported through the 
anode hole and the actual current emitted from the 
cathode could not be determined. 

Summary 

Using the paraxial approximation enabled the 
derivation of a differential equation for the applied 
potential in a relativistic electron gun. The 
equation also incorporates the effects of the beam’s 
own azimuthal magnetic field. The resulting equation 
was considered for the case of a parallel beam and 
for the case of an exponentially converging beam. 
When the paraxial approximation is valid the solu- 
tions to the equation give reasonably accurate 
results in terms of expected current and axial 
placement of electrodes. 

References 

111 

[?I 

131 

I41 

P. T. Kirstein. G. S. Kino, 
W. E. Waters, Space Charge-Flow, New 
York : McGraw-Hill, 1967, Ch. 3, 
pp. 131-137. 

D. L. Birx, “Technology of Magnetically 
Driven Accelerators,” presented at the 
1985 Particle Accelerator Conference, 
Vancouver, B.C., Canada, May 13-16, 
1985. 

Grivet, Electron Optics, Paris: 
Pergamon, 1964. 

G. J. Caporaso and D. L. Birx, 
“Brightness Measurements on the 
Livermore High Brightness Test Stand,” 
presented at the 1985 Particle 
Accelerator Conference, Vancouver, 
B.C., Canada, May 13-16, 1985. 


