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Summary 

A method is presented for the computation of the 
longitudinal coupling impedance of an azimuthally 
symmetric obstacle of general shape in a long beam 
pipe. The method involves a numerical calculation of 
the fields at mesh points in the cavity alone, from 
which the additive contrfbution of the cavity to the 
coupling impedance of the beam pipe can be obtained as 
a surface integral confined to the cavity wall. NU- 
merical work for obstacles of vartous geometries is in 
progress. 

Introduction 

The solution for the electromagnetic fields in a 
cavity - beam pipe combination driven by a periodic 
current source is complex even for the simplest geo- 
metries. Keil and Zotteri have obtained the result 
for the longitudinal coupling impedance for a beam 
pipe of circular cross section and large circumference 
connected to a cylindrical cavity. They match field 
solutions within the beam, between the beam and the 
beam pipe walls, and in the cavity outside the beam 
pipe radius, and obtain the result for the coupling 
impedance as a slowly convergent infinite series. 

In this paper we treat the field in the cavity 
region as a modifFcation of that in the beam pipe. 
The solution for this modification of the field in the 
cavity can then be obtained numerically for an 
azimuthally symmetric obstacle of general shape by 
relattvely siniply changes in the numerical program 
SUPERFISH. 2 

Field Analysis 

We consider a beam pipe of cross sectional radius 
b and circumferential length 2m in which an 
azimuthally symmetric cavity-like obstacle tith dimen- 
sions small compared to R is located, as shown in 
Figure 1. 
defined as3 

The longitudfnal coupling impedance ts 

z,(W) = - . f  j* l ~dv/lI,I’ 

where d is the electric field in the cavity beam pipe 
combination due to a driving current given by 

(Io/Qz2) eiwzfv , r < a 
J=(r,z,t) = { 0 , r>al (* 

The factor exp(-lwt) has been omttted from all fields 
and currents. 

The solution for the fields for a lossless beam 
pipe without an obstacle (denoted by subscript 1) is 
well known. 4 Specifically, it is 
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and where the upper and lower entries in { } 
correspond to r < a and r > a. 

Figure 1. Typical cavity/beam pipe geometry. 

The fields in the cavity/beam pipe combination 
(denoted by subscript 2) satLsfy Haxwell’s equations 
1n the form 

v x $ = iwp $ , v x ;t = -iw $ + .J , (9) 

which is the same as that for the fields for the beam 
pipe without cavity: 

v x 5, = iopH+l , v xii1 = -iwp z1 + s . (10) 

If we wrfte $2 2 2, + g, g2 I zl + <, then G and 6 

satisfy the homogeneous Maxwell equations: 

v x z = iwp i: , v x i: = -iwe : (11) 

as well as the wall boundary condCtion 
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+ 
xe=- (on boundary surface S2). (1-J.) 

Y 

Here ;;2 is a unit vector normal to the cavity/beam 

pipe wall surface. Clearly ;i x z = 0 on that portion 

of the boundary which coincides with the beam pipe. 
Equations (11) and (12) thus represent an equivalent 
SUPERFISH problem with specified frequency and 
boundary condition, and which can be solved on the 
usual triangular mesh in the cavity region. The only 
complication comes from the boundaries A and B which 
separate the cavity region from the beam pipe. These 
are discussed in the next section. 

Boundary Equations at A and B 

Let us denote the values of h$ at mesh points 

corresponding to the same z = zm but for different r 

as hm. For the beam pipe we assume a mesh structure 

in which the triangles connecting m-l to m are a re- 
flection of those connecting m to m+l. In this way 
the matrix equations in the pipe become 

Bhm-L + Ulhm+ Bh,,+L = O, 

Fhm + 4hm+1 + Fhm+2 = 0 

This choice insures that the eigenvalue of the phase 
advance for propagating modes in the pipe are exactly 
real, thus avoiding any spurious growth of field 
amplitude for a long beam pipe. 

We can use Eqs. (13) and (14) to express hm in 

terms of %+2, &.2. Repeated application of this 

reduction allows us to express h,,, in terms of htiIttR, 

where li = Pp. Further application of this reductfon 
procedure and Eqs. (13) and (14) allows us ultimately 
to express ho and hM+l in terms of hl and hM. These 

equations are then the boundary equations for SUPER- 
FISH at m = 1, m = M (z = A, B) since ho and hM+l are 
now Lnternal to the cavity. 

With each matrix block corresponding to the di- 
mensions of the "vector" hm, the matrix equations are 

again in the form of tridiagonal bLocks, as in SUPER- 
FISH, but they now also contain non-vanishing entries 
in the upper right and lower left corner blocks. The 
matrix reduction process used in SUPERFISH can be 
readily modified to Cnclude these two non-vanishing 
blocks. 

Longitudinal Impedance 

The longitudinal coupling impedance corresponding 
tollthe field in Eq. (3) can be written, for b << yR/n, 
as 

zL1 
nZ. -=--$(++-fnil 

0 

(15) 

where Zo = v$?? = 377 ohms Cs the impedance of free 

space. Once the values of he are obtained numerically 

for the cavity, it is necessary to recalculate Eq. (1) 
in order to obtain the modified coupling impedance. 

The result can be put into a more convenient form 
by using the identity 

I 
v2 

dv V l (3; x Fi2 + ;2 x H+T) 

= - 1 dv (g2 ’ ;* + “; - 3) 

obtained from Eqs. (9) and (lo), where the integral is 
taken over V2, the cavity/beam pipe total volume. 

(For those portions of V2 outside the beam pipe volume 

VI' 6,, $L are defined by Eqs. (3)-(5).) The right 

side of Eq. (16) can be written, using Eq. (15), as 

lIo12 (Zu + Z&) = lIo12 (Zu - Zt1). (17) 

The left side can be written as an integral over the 

wall surface S2. Since 4 x 4 = 0 on S2, only the 

first term survives, giving 

f 
s2 

dS ($ x g? l 4) = - 2m fs2 r Hp2(zf. l iz) (18) 

where the surface integral over S2 (or the line inte- 

gral over ~2) now extends only over that portion of 

the surface different from SL, since i L 
x8*= 0 

everywhere S2 and Sl coincide. Thus we can express 

the contribution of the cavity to the coupling impe- 
dance as the Line integral 

Azt _ z12 - zL1 -=--- 
nZ. nZ 

0 0 

r He2 ("f l 2:) , (19) 

a quantity readily obtained from the numerical results 
for ho = Hq - Hel. 

Numerical work for various cavity/beam pipe geo- 
metries is in progress. 
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