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Summary 

Cumulative beam breakup in a high current linac 
can be represented by a set of difference equations 
for the Mth beam bunch in the Nth cavity. We here in- 
vestigateFhe modification of the solution of these 
equations when the displaced beam current grows 
smoothly to its final value. Simulations show a 
dramatic reduction in the transient, even when the 
current growth takes place over only a few bunches. 
In our analysis, adiabatic results for large M and N 
are given for an exponential build-up of current cor- 
responding to a "time constant" of T bunches. The 
solutions confirm the behavior observed in the simula- 
tions in all details, including the location of the 
transient peak, as well as the dramatic dependence of 
the magnitude of the transient on T. 

Introduction 

In cumulative beam breakup a transversely dis- 
placed bunched beam interacts with one or more trans- 
verse modes in a series of uncoupled identical 
cavities. As a result, the transverse beam displace- 
ment can grown by a large factor in successive 
cavities. This henomenon has been analyzed by 
several authors. P In a recent publication' the dif- 
ference equations for the Mth bunch in the Nth cavity 
have been solved exactly for the case of no accelera- 
tion. The magnitude, location and width of the 
transient growth (large M, N) obtained are in excel- 
lent agreement with numerical stmulatFons using the 
difference equations. 

In all these analyses the beam bunches are each 
assumed to contain the same charge. In the present 
paper we investigate the effect of a smooth build-up 
of the current, expecting little effect if the build- 
up is more rapid than the growth rate of the transient 
for a constant current. Suprisingly, there is a 
dramatic decrease in the magnitude of the transient 
even for a rapid current build-up. 

Difference and Differential Equations 

The difference equations for the transverse dis- 
placement c(N,M) and angle B(N,M) can be written as* 

S(N + l,M) = Mllc(N,M) + 
Vl2 
- [e(N,M) + 6(N,M)l (1) 
YN+l 

Q(N + 1,M) + M21Z(N,M) + 
y&2 
- [WN,M) + @(N,M)I (2) 
'N+l 

where 

M-l 
@(N,M) = L 1 y.,-leS(N,a) RNR (3) 

'N ll=O 

sk = e -kwr/2Q sin ktti,z (4) 

Here the 2&! matrix Mij represents the transport and 

focussing between cavities, w!2r and Q are the fre- 
quency and quality factor of the transverse cavity 
mode, t is the ttme interval between bunch, yN is the 

particle energy at cavity N in units of me2 and RN1 is 
a parameter proporttonal to the charge in the Rth 
bunch as well as to the ratlo of the shunt impedance 
to the Q of the Nth cavity. 

EquatLons (1) and (2) have been solved exactly* 
for RN~, Mij and yN independent of N and P. This does 

not appear to be possible for RN1 dependent on B and 

we therefore assume a smooth dependence and convert 
Eqs. (1) and (2) to differential equations in the 
absence of external focussing. 

If we define y(N,M) by F,(N,M) [~~/M12)1'~ = 

y(N,M) and assume that Ml2 and y are slowly varying 

functions of N, we obtain 

M-L 
a2yW,M) = 1 

ad 
pNn%-a y(Nd-) 

.I=0 
(5) 

where PN1 f 
RNI"12 -- = p(B) q(N) is assumed to factor 

P into independen functions of M and II, with p(1) 
normalized such that p(m) = 1. 

The steady state value of y clearly satisfies 

a2~(W-) I 
m 

s$ 
q(N) y(N,-) 7 Sk (6) 

k=l 

so that we can write for the approach to equilibrium 

a2W,W _ 
al? 

M-l 
q(N) 1 P(l)s~-f y(N,R) + q(N)y(N,m) Im(HeiMa] (7) 

I-0 

where Y(N,M) t y(N,M) - y(N,-), n = ~r(l + i/2Q), and 

H = esiMa [ i eika - y p(M-k) eika]. (8) 
k=l k=l 

If we choose an exponentLa1 transient for the current 
of the form 
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p(R) = 1 - e -L/T (9) 

where T Cs the “time constant” for the build-up, we 
find for M >> T 

H(T) = --&-- - - 1 

e - 1 e-is _ .-l/T 

Clearly IH(T)/ = K for T = 0, and K2/T for T >> 1, 

where K-l = 2 1 sin(wz/2)/, as long as we are not at a 
resonance wz = 2nn. 

Let us now set 

Y(N,M) = [u(N,M)emiMa + u*(N,M)efMa]/2 (10) 

and neglect all terms whose phases vary rapidly with 
M. [We assume u(N,M) varies more slowly with M than 
exp(iMa) .] This leads to 

a2uW-f) _ 
i3N2 

$ v(N,x), k(p = q(N)p(M)u(N,M) I;;; 

where 

M-l 
v(N,M) = q(N) [ 7: p(a)u(N,R) - y(N,=‘)H(T)j(l3) 

R=O 

Transient Solution for Approach to Equilibrium 

We can solve Eqs. (11) and (12) approximately by 
trying a solution of the form 

e’N’M’\ = {ii exp[fWg(N)l v(N,W (14) 

where the dominant M and N dependence is included in 
f(M) and g(Y). Equations (11) and (12) then become 

A[f(M)J2[g’(N)12 = iB/Z, Bf’(M)g(N) = Ap(M)q(N) {kz; 

requiring 

(17) 3[f(Wl*f’W = p(M), g(N)[g’*N)12 = 3iq(N)/2 (18) 

These equations can be solved to give 

f(M) = [l: p(1)d1]1’3 (19) 

g(N) = t exp (?I [ff [q(n)]l’2dn]2’3 (20) 

We now need to estimate the normalization factors 
A and B. Since f(0) = 0 according to Eq. (19), we 
find from Eqs. (13) and (14) 

B = v(N,O) = -2q(N) y(N,-) H(T). (21 

We now assume that Eq. (2 1) gives the dominant 
dependence of both A and B on T, namely propor- 
tionality to H(T). But for T = 0 our previous exact 
solution2 holds, so that we can modify Eq. (?O) in 
Reference 2 by the factor IH(T)/H(O)I to write as our 
final result for the approach to equilibrium 

IEOJJC - F,(N,-)l/Eo = 

where 

G(N) = Re[g(N)] = y [!f [q(N)]1'2dn]2'3 (23) 

and where we have used the approximation f(M) = 

(M - T)l’3 for the exponential build-up in Eq. (9) in 
the region 1 << T << M. 

Numerlcal Results 

Simulations have been performed for the para- 
meters in Reference 2, namely 

LE = 1.846, 2q = 5.80 x 10-3, 
2n 

q(N) = 2.88 x 10-3, F. = lmm. 

for T = 0,5,20,80, and the results are shown in 
Figures 1-4 for N = 30. If we define 

w(M) = Rn IE(N*Mi - E(Npm)l + F + i kn(M - T) (24) 
‘0 

and plot w(M) vs (M - T)l’3, Eq. (22) predicts that 
the result will be a straight line with slope G(N) and 

w intercept an[ /H(T) 1 V% (4/3)li4/3 fi]. Figure 5 
shows that the simulations lead to almost perfect 
straight lines, with intercepts and slopes as given in 
the table : 

Simulation Predicted 

T Intercept - Slope Intercept Slope 

0 -1.32 1.77 -1.24 1.78 
5 -2.89 1.77 -2.78 1.78 

20 -4.18 1.77 -4.16 1.78 
80 -5.57 1.77 -5.55 1.78 

We clearly have an excellent analytical model for 
the transient approach to the steady state for a 
current pulse which builds up exponentially. It con- 
firms the rapid decrease of the maximum amplitude with 
T as contained in the factor /H(T)/H(O)I = K/T. 

Non-Transient Behavior 

The simulations also show rather simple behav.Xor 
in the region M < T (see for example FLg. 4 for T = 
80). We can derive the result for this range of 
parameters Ear the case constant q(N) = q by starting 
with Eq. (5) for y(N,M) or E(N,M). Specifically, we 
write S(N,M) as a power sertes in N(>> l), and 
eventually obtain 

F,(~)(N,M) 3 5, c0sh ~41 (25) 

2 
“M 

where cash oM = 1 + T I 1 + v(M) qcotb’d2) 

Remarkably, Eq. (25) agrees completely with the non- 
resonant steady state result in Eqs. (57)-(59) of 
Reference 2, and thus describes the non-transient 
behavior for all relative values of M and T. In fact, 
one can wrfte a general result for F(N,M) for all M by 

replacfng <(N,m) by <(l)(N,M) in Eq. (22). The solid 

line in Fig. 4, representing ?(l)(N,M) for N = 30, T = 
80, shows the symmetric behavior of the transient with 

respect to F.(l)(N,M). 

5,6 exp(- s + G(M-T)1’3! (22) 
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Fig. 1 T,(N,M) vs M for Olrrent Build-up with T = 0 
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Fig. 2 E(N,M) vs M for Olrrent Build-up with T = 5 
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Fig. 3 F,(N,M) vs M for Olrrent Huild-up with T = 20 
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Fig. 4 F,(N,M) vs M for Olrrent Huild-up with T = 80 
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Fig. 5 Plot of W(M) vs (M-T)~/~ for T = 0,5,20,80 

References 

1. See for example P.B. Wilson, Proceedings of the 
1981 Accelerator Summer School, Fermilab, p. 450; 
R. Helen and G. Loew, Linear Accelerators, edited 
by P.M. Lapostolle and A.L. Septier, John Wiley 
and Sons, 1970, p. 201; Neil, Hall and Cooper, 
Particle Accelerators 9, 213 (1979). 

2. Gluckstern, Cooper and Ghannell, Particle 
Accelerators 16, 125 (1985). 


