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Summary 

We have obtained analytic results for the dis- 
placement which results from cumulative beam breakup 
with random initial displacement of each beam bunch. 
The results are in excellent agreement with simula- 
tions, and confirm an enhancement of the single pulse 
maximum by a factor of the order of the square root of 
the "width" of the single pulse transient, as 
expected. 

Introduction 

In a previous paper' we have solved the dif- 
ference equations for cumulative beam breakup exactly 
for the case of no acceleration. Explicit expressions 
were obtained for the steady state solution in the 
case of a steady or modulated transverse initial dis- 
placement. In addition, the transient solution was 
obtained for a single initial displaced bunch, as well 
as for the approach to the steady state. 

Our results show a significant enhancement of the 
transverse deflection if the initial bunch displace- 
ment is modulated at a frequency which in resonance 
with the sum or difference of the transverse mode 
frequency and any multiple of the beam bunch fre- 
quency. Since a beam with random initial beam dis- 
placement can be expected to have a portion of Its 
spectrum in a resonant frequency region, we expect 
enhanced displacements in the rms case. This paper Is 
an investigation of beam breakup in the case of random 
initial beam bunch displacements. 

Analysis 

The solution for the displacement of the Mth beam 
bunch in the Xth cavity for a single initial displace- 
ment, Co, is2 - 

S(N,M) = F,o[f(?l) + f*(M)] (1) 

with 

f(M) = fi 
__- e P(M) + iq(M) (2 ) 
2~J6y 

P(M) + iq(M) : - % - iMwt + ; (& + i) F + e (3) 

Here 

F = (ii N2 M)lf3 (4) 

where R depends linearly on the average beam current 
and the ratlo of the transverse shunt impedance to the 
Q of each cavity. Considering only the M dependence 
in the exponent, one finds that /<(N,M)I reaches a 
maximum 

ItI ma* = L (4’11/4 Jpo PO 
F 

-0 fi3 
- e M 

0 

when 

M = MO = (;j3j4 N ($3/2 (;j1j2 

(5) 

(‘3) 

where 

PO = p(M,) = Moos/Q (7) 

In the situation where all initial displacements 
are random, the displacement F,(N,M) can be obtained as 
a linear superposition of the solution for individual 
initial displacements. Specifically one has 

F,(N,M) = 'i! [f(m) + f*(m)] ?(O,M-m) (8) 
m=O 

where F(O,j) is the fnittal displacement of the jth - 
bunch. The expected value of K2(N,M) as M + m for 
uncorrelated initial displacements is therefore 

<$'(N,m)> = 2<F,t> i If( (9) 
m=O 

where we have neglected oscillatory terms and where 

<?o> is the average square initial displacement. 

It is clear from Eqs. (2) and (3) that the 5um in 
Eq. (9) is dominated by the behavior of p(M) near M = 

MO’ 
If one considers only the m dependence in the ex- 

ponent, and approximates the sum in Eq. (9) by an 
integral over m which is evaluated in a saddle point 
approximation, one finds 

<E2(N,-)> _ 1 6- 
--?- e 

2P 0 

<f> 6Jii Mo 
(10) 

Clearly the order of magnitude of the result in Eq. 
(10) can be understood as the square of the maximum 
displacement in Eq. (5) multiplied by the "width" of 
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the transient in Fq. (l), which is given approximately 
ZtS 

m - J2n [-p”(Mo)]-l’* y 4MoIx (11) 

Comparison with Simulations 

Simulations have been perforyd with numerical 
values used in the previous paper , namely R = 2.88 x 

10-3, Q = 1000, WT = 11.6, N = 15,30 and the results 
are shown in Figs. 1 and 2 for a random initial dts- 
placement whose distribution is uniform between -1 mm 
and 1 mm. For N = 15, one finds from Eqs. (6), (7), 

(10) that MO 2 520, p, = 6.0, <c2(15,m)>1/2 2 6.4 mm. 

For N = 30, one obtains MO = 1040, p, = 12.0, 

<$(30,-)>1/2 = 1.64 m. If one asSumes that the rms 
values in Figs. 1 and 2 are reduced from the peaks by 
a factor 2 because of oscillations of both the 
envelope and the displacement, one sees that the 
agreement between the simulation and the above predic- 
tion is quite good. 

The striking pattern of the simulations, particu- 
larly the one in Fig. 2, can be understood by recog- 
nizing that the displacement for a given M can be 
thought of as the sum of the displacements with oscil- 
latory phase in Eq. (8) from m = MO - AM/2 to 

MO + @M/2, where I?+! is the “width” of the single pulse 

transient. Clearly such a hum resembles a random walk 
phenomenon, and the points of small envelope in Figs. 
1 and 2 correspond to the intervals in m for which the 
sum of the random contribution vanishes. Moreover, 
the envelope peaks are approximately separated by the 
value of AY in Eq. (11). 
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Fig. 1 T,(N,M) vs M for Cavity Number N = 15 with 
Random Initial Displacement 
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Fig. 2 F,(N,M) vs M for Cavity Number N = 30 with 
Random Initial Maplacement 
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