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Introduction 

In the SLC, after leaving its damping ring, the electron 
(or positron) bunch is accelerated from 1.2 GeV to 50 GeV in 
sectors 2-30 of the linac, before entering the collider arcs. It 
is important that the beam emittance growth in these sectors 
be small, since the luminosity depends inversely on the final 
emittance. For 5 x 10” particles per bunch slight excursions 
from the structure axis will induce dipole wake forces that will 
tend to cause large emittance growth, also known as single 
bunch beam break-up. Position monitors and correctors are 
installed that will help keep the beam close to the structure 
axis. Further, instrumentation will be added that will allow 
the initial 2, z’, y, y’ of the beam to be varied, to compensate 

coherent effects of machine errors,’ until the best quality beam 
reaches the end of the linac. These measures, however, will 
have no effect on the pulse-tc+pulse jitter of injection, whose 
tolerances turn out. to be quite stringent in the SLC. According 

to calculations,’ the allowable jitter amounts to 1% of (~~0 
positional and 1% of oZ~o angular injection errors, either of 
which results in an emittance growth of 25%. 

In the SLC the beam leaves the damping ring with very 
little energy spread. Following an idea used in the VLEPP 

design,3 we propose running the bunch behind the crest of 
the RF wave in the early part of the linac, in order to induce 
a large coherent energy spread between the head and the tail 
of the bunch. This energy spread induces a damping similar 
to Landau damping that stabilizes the beam against the large 
transverse wakefields. This extra energy spread is gradually 
removed by placing the bunch at a suitable position in front of 
the crest of the RF wave in the later part of the linac. We shall 
see that this phase juggling results in greatly relaxed injection 
jitter tolerances, but at the cost of some final energy. 

The Two-Particle Model 

The two-particle model is a us;f;l model for studying sin- 

gle bunch beam break-up in a linac ’ and the effect of Landau 
damping. Though somewhat, crude, it displays the general fea- 
tures of the beam behaviour. Let the beam be modelled by 
two particles, each of charge Q/2 separated by a longitudinal 
distance z. For simplicity we let the energy of the two particles 
be constant, and we assume smooth focusing. The two parti- 
cles have respectively wave numbers k, k + Ak, and energies 
E, E + AE. Particle 1 feels no transverse wake force, and it 
undergoes free betatron oscillation. Particle 2, though, experi- 
ences the force F, = eQWZ(z)zl/2 due to the leading particle’s 
motion, where iv=(z) is the value of the dipole wake function 
for longitudinal separation .Z and ~1 is the transverse position 
of particle 1. Its equation of motion is that of a simple driven 
harmonic oscillator 

z; + (k + Ak)‘zZ = Csl (1) 

where the independent variable is s the position along the ma- 
chine and where C = eQW,(z)/2E for lAE/El small. 

Effective emittance growth is modelled here by the dis- 
placement of the particles in phase space. Hence we would like 
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to keep the quantities [zz - ~11 and 1~; - xi/ small. If both 
particles have the same initial conditions and Ak = 0 then 

(a - II) iCs iks 

f 
=-e , 

2k 
where 2 is a complex constant determined by the initial con- 
ditions. Eq. (2) is a linearly growing oscillation. The quantity 
(z; - z:) is just the derivative of Eq. (2) and would therefore 
also be represented by a linearly growing oscillation, for large 
s. For small IAk/kj but with Ak # 0 we get 

(Q - 21) 

i 
= (1 - &) 2isin(T)ei(‘+4*)’ . (3) 

Eq. (3) represents two beating sine waves with amplitude 
A = 2(1 - C/2kAk). Here we easily see the asymmetry in 
the effectiveness of the damping. For least growth, that is, to 
minimize A, we want Ak > 0: the trailing particle should have 
lower energy than the leading particle, since the chromaticity 
f < 0 in a linac. In particular, if A = 0, that is if 

the trailing particle also undergoes pure betatron motion and 
exactly tracks the motion of the leading particle. (A similar 
relation is found in Ref. 3.) In this case the extra phase ad- 
vance of Particle 2 over a given distance exactly cancels the 
wakefield kick it feels due to Particle 1. There is no emittance 
growth. For example, in the SLC, taking L = 2u, = 2mm, 

Q = 5 x lO”e, WZ(z) = 2.4 x lo3 V/pC/m2,6 and (with 90” 
phase advance per cell) k = 2n/lOOm, < = -4/r, the optimal 
energy spread would be AE x -l.OGeV. This value is very 
large. By using stronger focusing, therefore increasing k, the 
optimal energy spread could be reduced. 

We also note that both Eq. (3) and its derivative reach ap- 
proximately zero for Ak s/2 = nx, where n is an integer. By a 
proper choice of Ak, one of these minima can be made to coin- 
cide with the end of the linac, thus minimizing the emittance 
there. We will exploit this property in maximizing the effective- 
ness of the damping in the linac of the SLC. For the first beat 
minimum to land at the end of the linac, where s =: 3OOOm, 
requires that < Ak >= 2 x 10w3/m, where the brackets mean 
the average over the length of the machine. For the lattice 
described in the following section this roughly corresponds to 
an energy separation of the two particles of AE z -0.4GeV. 

The two-particle model can be simply extended by letting 
the two particles become two rigid longitudinal charge distri- 
butions. For two uniform distributions of charge, assuming 
Ak and FV, vary linearly with z, we still find the beating sine 
waves, although now the beat minima do not reach zero. We 
shall also see this property in the simulations. The model can 
be extended to include the effects of acceleration. Roughly all 
position and angular values will then be modified by the multi- 
plicative factor l/d- where Eo is the initial energy and 
G is the energy gradient. 

The Simulation Program 

Ref. 7 describes a method of tracking the bunch behaviour 
in a linac, including wakefields. The computer code LTRACK, 
which employs this method, divides a bunch into a number of 
slices longitudinally. It transports each slice’s centroid and D 
matrix through a lattice to first order by matrix multiplication. 
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In addition, when traversing a cavity, each slice is affected by 
the wakefields of the slices in front of it. For the simulations 
discussed here LTRACK has consulted a table of the longitu- 

dinal and dipole wakefields for the SLAC linac structure.6 

We define here the total effective z-emittance of a bunch 
2 2 cz = uzzuz’zJ - Uzz’ , (5) 

where 

Q is the total charge and M is the number of slices in the 
bunch, Q; is the charge of slice i and azz; is the square of the 
standard deviation in z of slice i about the centroid of the 
bunch. The other total moments (~~1~’ and uz.+ are defined in 
an analogous fashion. We then define the emittance growth 
factor S,, from position 0 to position 1 in the linac as 

& = (741 - (740 
(%)o ’ 

where 7 is the average energy of the bunch. Normally position 
0 is taken to be the beginning and position 1 the end of the 
linac. Note that in beam break-up the invariant emittance of 
no slice ever changes. The effective emittance growth is due to 
the misalignment of the slice centroids in phase space. 
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Fig. 1. One cell of the SLAC linac, sectors 2-30. 

The layout of one cell of the SLAC linac, sectors 2-30 is 
shown schematically in Fig. 1. Four cells followed by a drift 
of 2.5 m make up one 100 meter sector. The peak acceler- 
ating gradient is 18 MeV/m. To induce an energy spread in 
the beam we separate the 232 klystrons (one for each 12 me- 
ter accelerator section) into two families. Family a contains n, 
klystrons phased so that the bunch center sits at phase 4, with 
respect to the RF crest. In family 6, ‘containing the remain- 
ing klystrons, the bunch sits at phase $+b. In th SLC without 
Landau damping, for minimal energy spread at the end of the 
linac, the bunch needs to sit at 12’ ahead of the RF crest, to 
compensate the variation of the longitudinal wakefield along 

the bunch.2 With Landau damping; the bunch needs to see, 
on average, the same slope of the RF wave. Therefore, since 
all the accelerator sections are of the same length, we want 

na sin $a + (232 - n,) sin db = 232 sin 12’ (8) 

In all runs presented here the longitudinal distribution of 
the bunch is taken to be Gaussian, truncated from 4crz in front 
of bunch center to 20, behind, and with uz = lmm. The 
number of particles contained in a bunch is 5 x 10”. The 
number of slices is 16. The initial normalized emittance is 
ycz = 3.0 x 10-‘rm. All slices begin upright, with crzo = 
300pm, (~~‘0 = 42pr and energy Ee = 1.21GeV. In all runs 
the quads are adjusted such that the p-function of the central 
slice is matched, and as given in Fig. 2. For the first 1300 m 
the phase advance per cell is 90’. From there to the end of 
the linac the quad strengths are approximately equal to 110 
kilogauss, their maximal value. ‘8 
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Fig. 2. The matched p-function in sectors 2-30. 

The Ideal Machine 

The LTRACK results for the SLAC linac with no errors 
are given in Fig. 3. Cases with & = -15°,-300,-450,-600 
were run. Fig. 3a gives the initial z offset that produces 25% 
emittance growth in the linac, zd. The number n, was adjusted 
in each case to maximize zd. For the case with no Landau 
damping (denoted by NL in Fig. 3) we get zd = 2.lpm. Fig. 
3b gives the final energy EF of the beam for the same runs. 
For no Landau damping EF = 50.0GeV. The dashed curve 
gives EJ- if we allow zd to decrease by 20% from the optimal 
values, by reducing n,, and gives an indication of the width of 
the minimum as a function of energy. We see that although 
we have more stability as 4,, becomes more negative (up to 

da x -50’) we lose more energy. The drop in zd for 0, < -50’ 
is due to increased mismatch along the bunch (see below). 
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Fig. 3. Results for the error-free machine. 

Fig. 3c gives the emittance growth for an initial offset 
zo = O.lo,o = 30pm. For no Landau damping S,, = 4700%. 
The dashed curve is the emittance growth for a beam launched 
on axis, and is due only to the twisting of the slices with respect 
to one another in phase space. This effect is stronger for 4, 
more negative, and is in fact the dominant effect for 4. = -60’. 
This is due to the greater lattice mismatch along the bunch ’ 
when the energy spread is added quickly rather than more 
gradually along the linac. Fig. 3d gives the values of n, used. 

In Fig. 4 the beam behaviour with no Landau damping 
(column 1) is compared with the caze where & = -30’ and 
n, = 31 (column 2). The initial offset 20 is 30pm. The bunch 
centroid z is plotted as a function of s in Fig. 4a, for the case 
with no damping. In Fig. 4b we see the rapid emittance growth 
along the linac. A scatter plot of the beam at the end of the 
linac is given in Fig. 4c. (The head is to the right.) Note that 
the tail half of the bunch is strongly perturbed; in comparison, 
the front half is little affected. For the case with damping the 
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Fig. 4. Results without/with Landau damping. 

beating effect is clearly evident in Fig. 4d, as is the well placed 
envelope minumum. A coherent emittance growth is induced 
early in the linac, which then largely disappears toward the 
end of the machine, as is seen in Fig. 4e. The beam arrives at 
the end of the linac relatively unperturbed, as shown in Fig. 
4d. 

The Machine With Errors 

In order to study the effects of machine errors, runs with 

1OOpm rms quadrupole offset errors (the SLC spec’ ) were 
done. Table 1 gives the results. Case 12 is with no Lan- 
dau damping. In case 15 4, = -15’ and n, = 51; in case 
30 da = -30’ and n, = 31. The letters A-E represent four 
different sets of random numbers. First, correctors (C) were 
adjusted to correct a low current beam to beam position mon- 
itors (M) with 100pm rms offset errors (see Fig. 1). Then the 
high current beam was launched on axis with these same cor- 
rector settings. In this way the head of the beam was corrected 
to the monitors. (Correcting the high current beam directly 
does not work due to the large tail that is formed on the un- 
corrected beam with the level of errors studied here.) Column 
2 gives the resultant emittance growth. The emittance growth 
at this point is much larger without than with Landau damp- 
ing. By adjusting ~0 and Z$ coherent effects of the errors can 
be largely compensated (column 3). (In practise a screen mon- 
itor at the end of the linac would be used for the feedback in 
this procedure.) Note that the compensation is not perfect. In 
some cases the injection conditions have not enough leverage 
to reduce the final emittance to a small value. Note also that 
at this point Landau damping usually but not always results 
in a lower emittance growth than with no damping. 

By adjusting two correctors which are 90’ apart at the 
beginning of sector 6, we can reduce the emittance further 
(column 4). (In practise the screen monitor would again be 
used here.) At this point S,, is no bigger than 30% in all the 
Landau damped cases. With no Landau damping the extra 
correction has little effect. The final column gives the minimal 
change in zo that increases the emittance by 25% above the 
values given in column 4, Axd. (Normally the effect is not 
the same for equal changes in the two directions.) The results 
agree well with those for the error-free machine, ranging from 

Case (&Ja/% 
12A 944. 
12B 1010. 
12c 8150. 
12D 3870. 
12E 5080. 

156 271. 
15B 112. 
15c 82. 
15D 51. 

15E 332. 

30A 305. 
30B 92. 
3oc 22. 
30D 138. 
30E 266. 

239 1 

~ 

115.9 ) 105.5 1 2.0 

38.9 1 25.1 1 20. 
10.3 24. 

4.5 23. 
16.7 20. 
48.2 1 30.1 1 25. 

126.2 ( 23.5 1 36. 

Table 1. Results for the machine with errors. 

70-100% of the values given in Fig. 3a. These runs are a sort 
of proof of principle indicating that the dispersive effects are 
manageable, at least for & down to -30’. 

Conclusions 

In the SLC Landau damping can greatly stabilize the beam 
against changes in injection conditions into the linac. For ex- 
ample, by choosing & = -15’, n, = 51, the jitter tolerances 
for 25% emittance growth can be relaxed by greater than a 
factor of 10, while sacrificing 1.6 GeV in final energy. Increas- 
ing the focusing, especially near the beginning of the linac, will 
lessen the energy penalty for a given amount of stability. For 
example, with the planned addition of more quads in sectors 

2-4* the stability of the above example can be achieved at 

the cost of only 1.0 GeV in final energy.’ The simulations 
including machine errors indicate that the static residual emit- 
tance growth can be kept consistently below 30% with Landau 
damping, but that this would be difficult to achieve without 
Landau damping. It can be supposed that Landau damping 
will also stabilize the beam to magnet jitter, though a more 
thorough study of machine error effects still needs to be done. 
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