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Abstract 

The diocotron instability of a general 
relativistic electron beam is studied using a 
macroscopic, cold fluid model. In contrast with the 
previous treatments where the theoretical analyses are 
carried out for a teneous electron beam in a strong 
magnetic field, i.e., plasma frequency << cyclotron 
freauencv. the restriction on the magnitude of the 
beam deniity and guiding magnetic field is removed in 
deriving the general eigenvalue equation. In the 
limit of long axial wavelengths, a dispersion relation 
is extracted for a special case of a sharp boundary 
density profile. The stability properties for various 
rotating beams are investigated for a broad range of 
beam parameters. The results show that the kink mode 
can be unstable as the plasma frequency approaches the 
cyclotron frequency. 

Introduction 

Considerable reserch effort has been focussed 
recently on the development of high-current powerful 
relativistic electron beams. The beams with high 
current become very attractive because it provides 
some nice features as far as the beam propagation on 
the plasma media. Historically high current beams 
generated from accelerators are annular and guided by 
a strong magnetic field. The applied magnetic field 
provides radial confinement of the electrons. The 
diocotron instability has been studied' previously in 
the parameter regime where the plasma frequency is 
much smaller than the cyclotron frequency 
(W 

pb 
<< WC). Because the cost and physical limitation 

for the strength of the magnetic field, the criteria 
of 0 

pb 
<< wc can be easily broken down if the beam 

density continues to increase. Consequently, a 
somewhat more general type of treatment of the 
instability is needed. In other words, this paper 
examines the general theory of the diocotron 
instability of a relativistic electron beam, 
especially in the regime where the plasma frequency 
is comparable or even larger than the cyclotron 
frequency. 

Equilibrium 

Let us consider a cylindrically symmetrical 
relativistic annular electron beam propagating 
parallel to a strong axial magnetic field in a 
conducting tube. The inner and outer radii of the 
electron beam are denoted by RI and R2 respectively. 

R, is the radius of the conducting wall. The analysis 

of dynalnic properties is based on a maroscopic cold 
fluid model in which the electron flow is assumed to 
be laminar. The positive ions are assumed forming a 
stationary background (mi + m) which gives a partial 

fractional neutralization F. The balance forces in 
the radial direction give the angular velocity of an 
electron fluid element 

wC Wb(r) = -T {I - 

OC Y r 

Where the electron density profile is assumed to be a 
rectanole function in the radial direction and the 
angular velocity of an electron fluid element is in a 
slow rotational equilibrium. It is necessary for the 
confinement of the annular electron beam that 
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Stability Analysis 

In the linear stability analysis, the first-order 
perturbed quantities can be Fourier-decomposed 
according to 

&iP(r,e,t) = 6@(r) exp Ci(ae - tit)1 

where the oscillating angular frequency w is assumed 
to be complex with Im(w) > 0, R is the azimuthal 
harmonic number. All the perturbed quantities are 
axially independent. Upon linearizing the fluid- 
Maxwell equations, we obtain in the stability analysis 
the following eigenvalue eq. 
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where 

v 2 = (w _ bllb)* - (2wb + WC) [;& (r20,) + WC1 

and the perturbed potential 6~ = 6$(r) 
- b&AZ, $ and A are the scalar and vector potential 

of the electromagnetic field. In order to solve the 
eigenvalue equation, the boundary conditions at the 
surface of the plasma column have to be enforced, 
continuity and jump condition of the eigenfunction at 
r = RI and R2 connect the solution in different 

regions. Note that w:,(r) = 0 outside the plasma 

column. Following the same treatment as in 
Reference 2, a dispersion relation is obtained 
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where for the simplicity of notation, we use w 
pb 

to 

normalize w,'*)~,w~ and denote those quantities as 

x = w/w 
pb 

Y = iw /o 
b pb 

z = w /w 
c pb 
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Figure 1 - Diocotron modes of P = 1 to 1 = 4 
vs. fractional neutralization for the 
beam with y = 1.1, Rl = 0.8 Rc, 

R2 = 0.9 Rc and various values Of 

WC lw,. 
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Figure 2 - Similar to Figure 1 except 
that Y = 2. 

The result can be applied to systems in which the beam 
thickness is small compared with the radius of the 
conducting tube. IJhen the beam thickness is 
sufficiently large, the approximation breaks down 
because it is no longer legitimate to neglect the 
variation of tab with r. 

RESULTS 

The dispersion relation is solved numerically for 
the complex eigenfrequency w = wr + iui with real 

oscillation frequency (dr and growth rate wi for the 

unstable mode. Considering the annular beam with 
R1 = 0.8 Rc and R2 = 0.9 Rc, the results normalized to 

the diocotron frequency ctid are shown in Figures I and 

2 for the non-relativistic (y = 1.1) and relativistic 
case (Y = 2) respectively. The azimuthal mode numbers 
are taken from 1 = 1 to 4. In the case of a teneous 
beam in the strong field (e.g., wc = 320 w,), the kink 

mode (n = 1) is stable which agrees with the previous 
resultsj. However, as ac/wd decreases, the L = 1 mode 

can be driven unstable even at larger fractional 
neutralization. It is important to notice that the 
kink mode can break the asymmetry of the beam. 
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Conclusions 

We have formulated a fluid-Maxwell theory of the 
diocotron instability in an infinitely long 
relativistic electron beam propagating parallel to a 
uniform applied axial magnetic field. A somewhat more 
general type of treatment of the instability has been 
considered. For a general broad range of beam 
parameters, a closed algebraic dispersion relation is 
derived in the special case of a sharp boundary 
density profile, including the important influence of 
the fractional charge neutralization on stability 
behavior. It is found that the most dangerous kink 
mode can be unstable as the plasma frequency becomes 
comparable to the cyclotron frequency. It might have 
a strong impact on the stability of a high current 
relativistic electron beam. 
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