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ABSTRACT 

The transverse mode coupling tnstabtllty due to localized 
structures of a storage ring, like RF-cavities, is 
rnvesttgatec rn pr-esence of radlatron damping and 
quantum excttatlon for both synchrotron and betatron 
oscillations. Replacing the Vlasov equation by the 
Fokker-Planck equation, the longitudinal dynamics can 
only be described In terms of transltion probabilities, 
whereas the transverse motion of the bunch barycenter 
remains determrnlstic. By a numerIcal solution of the 
associated integral equation, we obtain better estimates 
of the instabilrty g rowt h rates and we show the 
dlsappearence of the stop-bands associated with very 
high order dipole modes, which turn out to be damped 
proportIonally to thelr- mode number. 

1. INTRODUCTION 

A relativistic charged particle passing through the 
conducting structures of an accelerator induces 
electromagnetrc wakeftelds which react on the partrcles 
folIowIng. This phenomenon gives rise to a collective 
force leadlng. under certain ccndltlons, to a coherent 
single bunch rnstablhty generally described in terms of 
transverse mode couphng [l-2]. Indeed the particle 
transverse dlstrlbution can be decomposed Into a series 
of orthogor,al modes : each of these modes IS 
characterized by a coherent frequency of osclllatlon 
which, for a grven betatron tune Y and synchrotron 
tune vs, depends on the bunch currint lb. When two 
transverse modes happen to have the same frequency, 
they get strongly coupled and a slight Increase of 
current causes one of them to become unstable. 

Most analytical theories on beam stabllrty [3] have 
made use of “distributed Impedances”, corresponding to 
a collective force whrch IS smeared out all along the 
ring As a result, they predict the existence of a 
threshold current Ith above which the combrned effect 
of wakefields and longltudlnal oscillatrons leads to a fast 
transverse blow-tip of the bunch, characterrzed by a 
rrse time comparable to the synchrotron period. 

Wakefields are mainly generated near localized 
structures of a storage rrng, ltke RF-cavities, bellows 
or other cross section varlatlons of the vacuum 
chamber Tnelr global effect can often be represented 
by a transverse kick localized at a srngle point of the 
machine and such a model 1s commonly adopted in 
partrcle tracklng by computer srrnulatron [4]. 

In a prevrous paper [5] based on the Vlasov 
equation, we showed the existence of instabilrty 
stop-bands at currents below threshold, which are due 
to the coupling between hrgh order and low order 
modes T h e stop-bar.d pattern repeats perlodically 
every half Integer in the betatron tune v and, choosing 
v in the range [O, l/2], the bunch- may become 
u?stable at very low currents near the resonant values 
v = n b 

z 
rate of 

s or v = l/2 - n v T-he maximum growth 
the In’stabllrty In as stop-band is roughly 

proportlonal to the width of the stop-band itself and 
decreases for Increasing mode numbers, These 
predictIons are in good agreement with the results of 
trackrng and with the conclusions drawn from 
two-or-more particle models [2]. 

In an electron-positron storage ring, both 
longrtudrnal and transverse osclllatlons are affected by 

radiation damping and quantum excitation: thus, In 
order to obtain more realistic results, the Vlasov 
equation has to be replaced by the Fokker-Planck 
equation [6-71. Here we investtgate the effects of 
damping and noise on the transverse mode coupling 
instability due to locahzed structures and show the 
disappearence of the stop-bands associated with very 
high order modes. By inspection of the lmaglnary part 
of the coherent frequencies, we can Identify modes 
whrch become urstabie above a grven current and obtain 
better estrmates of the instabillty growth rates. 

Starting from the Fokker-Planck equation, in Sectton 
2 we WIII dertve an Integral equatton for the transverse 
dipole dlstrlbutron function. In Section 3, this equation 
is reduced by a Fourrer analysrs to an equivalent 
ergenvalue problem which contarns resonant coefficients, 
dependlng on the coherent frequency of the dipole 
modes, Section 4 concludes the paper by a drscussron 
of the numerical results. 

2. THE FOKKER-PLANCK EQUATION 

We denote by (~,pr) the synchrotron phase space and 
by [z,p,) the normalized betatron phase space. At a 
flxed azimuth B. along the machrne, particles experience 
at each turn a transverse collectrve force F(T,t), 
depending on their tongltudrnal posrtion wthrn the 
bunch. Taking Into account radration damplng and 
quantum excitation [S], the single particle equations of 
motion can be written as follows: 

+ = P,, & = ws 2T - 2asp, + 3cp cJsasS, It) I 

; = p 
2’ 

;I = - Q - 2QzP, * 2(azP2wzuz57!tl +(‘I 

+ (pp wzF(t,t)/ymc. 

Here p, is the ampiltude functron at 6 ymc IS the 
particle momentum in the extreme reiatr:r;tfc case, o 
and o are the 
constaits, o 

synchrotron and betatron dampin; 
is the rms bunch length (in time units), 

uz the rms transverse beam radius and <,(t) and r?(t) 
are two Independent delta-correlated stocha-strc 
variables, describrng the white noise associated with 
quantum ercltation. 

The system of stochastic equations (1) is equivalent 
to the foIlowIng Fokker-Planck equation [6] for the 
phase,space distribution function v(T.p,,z,pz.t) 

(aqJ/atl = (L 
S 

+ L l hl) v, z (2) 

where L and L are two elllptlc differential operators 
takrng l:to acco6nt the effect of damping and noise on 
the synchrotron and betatron oscillations, respectrvely, 
whereas tvl is a first order dffferentral operator 
associated with the transverse collective force: 

Ls = WS2T(L%+PT) - Pr(a/dTI + 

+ 2aS(aidPT) [P, + Ws2Cs2(S:dpJ, 

Lz = wz2zfa/ap,) - p,(&‘dz) + 

+ 2azCa/aP,)[P, * 13z2CZ2wPZ)l, 

M = - (Q’2 wzF(l,t)iymc](d/apz). 

(3) 
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ln order to specify the form of the collective force 
F(T,t) and to transform the Fokker-Planck equation (2) 
into an Integral equation, we Introduce the transverse 

dipole dlstrlbutlon D(r,pT,t) and the associated 

transverse momentum dlstrlbution P(T,pT,t). They are 

first order moments of 
The USUal 

q wit$( r;;pect to z and pz. 
dipole density 1, is obtained by 

Integrating D(T,p,,t) over pT and the collective force 
corresponding to a single localized structure can then 
be written as in [5] 

F(T,t) = ;-(pz)” ‘26(t+T mod T) J’dt w(t-t’)D(-t*,t’) (4) 
-03 

where w(t) is the transverse wake-potential associated 
with the structure and T the ring revolution period. 

MultIplying the Fokker-Planck equation (2) by z and 

pz 
respectrvely, using (3) and lntegratrng by parts 

over 2 and P,. we can derive two coupled partial 
differential equations for D(T,pT,t) and P(T,pTtt) 

(6/6tlD = P; 
(5) 

(6/‘6t)P = - wz2D - 2ozP + (oZ)“‘wZP(r,pr,t)F(T.t):ymc 

where p(r,pT,t) IS the longitudinal distribution function 
of the bunch and the operator (di6t) = (a/at) - Ls,can 
be consldered as a generalized total time derivative. 
taking into account dissipative and diffusive effects due 
to synchrotron radiation. Eqs. (5) do not contain the 

rms transverse beam radius o and this shows that, in 
dipole approximation, the betatron motion is not affected 
by quantum excitation. 

The longitudinal distribution satisfies the “reduced” 
Fokker-Planck equation (6/6t)p = 0 and thus relaxes to 
a GaussIan steady state p(~,p,). We can combine the 

two coupled equations (5) to eliminate P, thus 

obtaining: 

(6/Et)2D + 2az(d/dt)D + wz 2D = 

= (PzP2 wzp(T,p,)F(r,t)/ymc. (6) 

This is formally identical to the equation of a damped 
harmonic oscillator driven by a force proportional to 

F(T,t). but the further dependence on the synchrotron 
variables T and p, has to be considered. To first order 

In the ratio az/wz, Eq.(6) has the followlng solution 

t 
D(T,pT<t) = [@,I”21 ymc] Jdt exp[-az(t-t’)] 

s~[wl(t-t’)li(T,pT,t,t’)’ (7) 

provided the function f(T,pT,t,t’) satisfies the reduced 
Fokker-Planck equation (6/6t)f = 0 and takes the initial 
value f(T.p ,t,t) = p(T,pT)F(r,t) for t’ = t. Indeed the 

r.h.s. of tq..O d escrlbes the effect of the collective 
force experienced at all previous times t’ < t by 
particles with final synchrotron coordinates T and p,. 
Terms of second order in the rat o az/tiz, which for 
LEP at tnlection energy is about 10 

-6 , are negligible. 
The function f(T,pT,t,t’), appearing in Eq.(7), can 

be expressed through the Green’s function of the 
reduced Fokker- Pianck equation : 

f(7,pT,t,t’) = :dr’;dpT’ G(r.pT.T’.P,‘.t-t’) 
-cm -p3 

p(~‘,p,‘l F(T’,t’). (e) 

The Green’s function G(T,oT,T’,pT’,t-t’) Irepresents the 
transitlen probabiltty, In a time interval t - t’, from a 
point with synchrotron coordinates T’ and p,’ to a point 
of coordinates T and p,. 

Since p is the only variable directly affected by 
quantum excTitat(on, the Fokker-Planck operator Ls does 
not contain second order derivatives with respect to T 
(see Eq.(3)). This sltuatlon IS slmllar to that 
encountered in the theory of Br-ownian motion and leads 
to a complicated formula for the transitton probability 
[6]. Nevertheless, we can approximate G by 

G(T,P~,T’,P~‘. t-t ) = (l/‘nwsos2) 

expi-[(pT-pTj2 + ~~2(r-~~~]i[2o~‘o~~(l-Q~)~}, (91 

where i(r’, P,‘, t-t’) and FT(~‘, p,‘, t-t’) describe the 
deterministic damped oscfllatlons of a particle with Initial 
coordinates T’ and p ’ at time t = t’, and Q(t-t‘) = 
exp[-as(t-t’)]. TheT exact Green’s function of the 
reduced Fokker-Planck equation differs from (9) by 
terms of order as/us, which become important only for 
time Intervals t - t’ much shorter than the synchrotron 
period. Thus the approximate solution (9) can be used 
to investigate the effects of radiation damplng and 
quantum excitation on the instablllty stop-bands at 
currents below threshold, characterized by rtse times 
longer than the synchrotron period. 

As in the previous paper [li], we focus our 
attention on the function fi (T.) = a(T,nT-T), descrlblng 
the transverse dipole densyty at the fixed azimuth 9 
after n machlne revolutions. Then, from Eqs.(J), (7): 
(8) and neglecting both synchrotron and betatron phase 
advances over a bunch length, we obtain the folIowIng 
Integral equation 

m m co 

Do = (e2Pz’E) JdpTJdT jdp,’ T exp(-kazTjsln(kwzT1 
-05 -0) -03 k=O 

G(T,P~,T’,P,‘, kT)p(T’,pT ) ;dx W(xlDn_k(“‘T‘i, (10) 
0 

where E = ymc 2 IS the relatlvlstlc particle energ) 

3. RESONANT COEFFICIENTS 

By a Fourier analysis, the integral equation (10) can be 
reduced to the elgenvalue problem 

cc 
Dq(v) = 1 

p=-m 
Aqpb4 Dpbl. 

Here D,(v) denotes the Fourier transform 
density and the Fourier frequency w = 
been split Into an integer multiple q 

. 

of the dipole 
(q+v)wo has 

of the ring 
revolution trequency w. plus a fracttonal tune v, wnose 
real part is in the range [- l/2, l/2]. The matrix 
A (v) reads 

qP 

(11) 

Aqp(v) q K Zp(v) ; Cn(v)Hn[o(q+v)]Hn[o(p*v)], (121 
n=O 

where K : i elbj3z/2E IS a coefficient proportional to the 
bunch current and Z (VI is the transverse impedance of 
the localized structu?e, i.e. the Fourier transform of 
the wake-potential w(t), The functions Hn[u(q*v)] 
represent the so called Hermite modes [2] and depend 
on the dimensionless bunch length o = woos. 
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The resonant coefficients C,(v) are given by 

C”(V) = IT r;, 

sin{2n[vz-(nBm)vs]I 

m=O cos{~n[v-1[A~+nAs)]~-cos{~~[v~-(n-2m,vs]} 

(131 

where AZ = a /w and As = 0 /w They carry all the 

information a6otYt the refleftioOn properties of the 

synchro-betatron satellites v = vz + mvs and show that 

the imaginary frequency shift due to longitudinal 

damping is proportlonal to the mode number Iml. 
Expandlng the eigenvectors Dq(v) of Eq. (11) in the 

Her-mite basis Hn[u(q*v)], we obtain a disperston 
reiatlon giving the fractional tune v of the orthogonal 
dipole modes as a function of the bunch current lb 

det I dnm - K C,(v) M,,(v) 1 = 0. (14) 

The impedance matrix M (v) can be computed using a 

broad band resonator mo%i as in [5]. 

4. NUMERICAL RESULTS 

We have plotted the imaginary part of v versus I for 

three different values of the betatron tune vz, t? c osen 

so that mode coupling occurs approximately at the same 
current below threshold. These figures have been 
obtained by a numerical solution of Eq. (141, with vs q 

6.088 and with the other parameters corresponding to 
LEP at inJection 
dimensionless 

energy [S]. In particularL5 the 

AS 
= 7.0 10 

-~mpi;;o~~‘y~h,“~, At%’ ;;;ta$t,a”i; 

always due to the coupling between modes 0 and -1. 
Flg.1 shows an Instability stop-band associated with 

the coupling between modes -3 and -1: we can identify 
the unstable mode as mode -1, since for vanishing 
current the imaginary part of its coherent tune 
approaches the value A, + As. Actually this asymptotic 
value is slightly different, because even for vanishing 
current the Hermite modes are not exact eigenvectors of 
Eq.(ll). Fig.2 shows a stop-band due to the coupling 
between modes -4 and 0 and, in thts case, it is mode 0 
which becomes unstable. Finally, in Fig.3 we consider 
the coupling between modes 5 and -1: here the 
instability stop-band disappears, since the imaginary 
part of v stays positive up to the threshold current Ith. 
We should mention that, for a given pair of couphng 
modes, the width of a stop-band and the maxlmum 
growth rate of the instability depend on the value of 

yz. In particular, all the stop-bands occurring at very 
low current near the resonant values vz : n vs and vz = 
l/2 - n vs disappear. 

In conclusion, startlng from the Fokker-Planck 
equation, we have computed the rise time of instabilities 
due to transverse mode coupling for localized impedances 
in presence of damping and noise, The approach is 
similar to that based on the Vlasov equation [5], but it 
shows the different role played by longitudinal and 
transverse damping. Betatron oscillations have the same 
imaginary frequency shift for all dipole modes, whereas 
the shift associated wtth synchrotron motion iS 

proportional to the mode number, This gives rise to a 
splitting of the imaginary parts of the coherent tune Y, 
thus allowing to identify the unstable modes. For high 
order dipole modes, damping is so strong that the 
instability stop-bands disappear completely. 
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Fig.1 Coupling between modes -3 and -1: v = 0.174. 2 

Fig.2 Coupling between modes -4 and 0: vz = 0.185. 
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Fig.3 Coupling between modes 5 and -1: vz = 0.322. 


