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ABSTRACT

The transverse mode coupling instability due to localized
structures of a storage ring, like RF-cavities, is
investigated in  presence of radiation damping and
quantum excitation for both synchrotron and betatron
oscillations. Replacing the Vliasov equation by the
Fokker-Planck equation, the longitudinal dynamics can
only be described in terms of transition probabilities,
whereas the transverse motion of the bunch barycenter
remains deterministic. By a numerical solution of the
associated integral equation, we obtain better estimates
of the instability growth rates and we show the
disappearence of the stop-bands associated with very
high order dipole modes, which turn out to be damped
proportionally to their mode number.

1. INTRODUCTION

A relativistic charged particle passing through the
conducting  structures of an accelerator induces
electromagnetic wakefields which react on the particles
following. This phenomenon gives rise to a collective
force leading, under certain ccnditions, to a coherent
single bunch instability generally described in terms of
transverse mode coupling [1-2]. Indeed the particle
transverse distribution can be decomposed into a series
of orthogornal modes: each of these modes s
characterized by a coherent frequency of oscillation
which, for a given betatron tune v_ and synchrotron
tune Ve, depends on the bunch current | When two
transverse modes happen to have the same frequency,
they get strongly coupled and a slight increase of
current causes one of them to become unstable.

Most analytical theories on beam stability [3] have
made use of "distributed impedances”, corresponding to
a collective force which is smeared out all along the
ring. As a result, they precict the existence of a
threshold current 1 above which the combined effect
of wakefields and longitudinal oscillations leads to a fast
transverse blow-up of the bunch, characterized by a
rise time comparable to the synchrotron period.

Wakefields are mainly generated near localized
structures of a storage ring, like RF-cavities, bellows
or other cross section variations of the vacuum
chamber. Their global effect can often be represented
by a transverse kick localized at a single point of the
machine and such a model is commonly adopted in
particle tracking by computer simulation [4].

In a previous paper [5] based on the Vlasov
equation, we showed the existence of instability
stop-bands at currents below threshold, which are due
to the coupling between high order and low order
modes. The stop-band pattern repeats periodically
every half integer in the betatron tune v_ and, choosing
v, in the range [0, 1/2], the bunch may become
unstable at very low currents near the resonant values
v = nv_or v, =1/2 - nwv The maximum growth
rate of the instability in a stop-band is roughly
proportional to the width of the stop-band itself and
decreases  for increasing mode numbers. These
predictions are in good agreement with the results of
tracking and with the conclusions drawn from
two-or-more particle models [2].

In an electron-positron storage ring, both
longitudinal and transverse oscillations are affected by
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radiation damping and quantum excitation: thus, in
order to obtain more realistic results, the Vlasov
equation has to be replaced by the Fokker-Planck
equation [6-7]. Here we investigate the effects of
damping and noise on the transverse mode coupling
instability due to localized structures and show the
disappearence of the stop-bands associated with very
high order modes. By inspection of the imaginary part
of the coherent frequencies, we can identify modes
which become unstabie above a given current and obtain
better estimates of the instability growth rates.

Starting from the Fokker-Planck equation, in Section
2 we will derive an integral equation for the transverse
dipole distribution function. f{n Section 3, this equation
is reduced by a Fourier analysis to an eguivalent
eigenvalue problem which contains resonant coefficients,
depending on the coherent frequency of the dipole
modes. Section 4 concludes the paper by a discussion
of the numerical results.

2. THE FOKKER-PLANCK EQUATION

We denote by (T,pT) the synchrotron phase space and
by (z,p,) the normalized betatron phase space. At a
fixed azimuth 60 along the machine, particles experience

at each turn a transverse collective force F(71,t),
depending on their longitudinal position within the
bunch. Taking into account radiation damping and

quantum excitation [8], the single particle equations of
motion can be written as follows:
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Here ﬂz is the amplitude function at 6_, ymc is the

particle momentum in the extreme relativistic case, a
and a_ are the synchrotron and betatron damping
constants, o  is the rms bunch length (in time units),
o, the rms transverse beam radius and Z;(t) and {2(t)
are two independent delta-correlated stochastic
variables, describing the white noise associated with
quantum excitation.

The system of stochastic equations (1) is equivalent
to the following Fokker-Planck equation [6] for the
phase, space distribution function w(T‘pT,z,pl,t)

(dy/at) = (L * L, * M)y, (2)
where L_ and L_ are two elliptic differential operators
taking into account the effect of damping and noise on
the synchrotron and betatron oscillations. respectively,

whereas M is a first order differential operator
associated with the transverse collective force:
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In order to specify the form of the coliective force
F(1,t) and to transform the Fokker-Planck equation (2)
into an integral equation, we introduce the transverse

dipole distribution D(T,pT,t) and the associated
transverse momentum distribution P(T,pT,t). They are
first order moments of y with respect to z and P,
The wusual dipole density D{(71,t) is obtained by

integrating D(T,pT,t) over p_ and the collective force
corresponding to a single localized structure can then
be written as in [5]
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where w(t) is the transverse wake-potential associated
with the structure and T the ring revolution period.
Multiplying the Fokker-Planck equation (2) by z and
P, respectively, using [3) and integrating by parts
over z and p_, we can derive two coupled partial
differential equations for D(f,pT,t) and P(T,PT,t)

(6/51)D = P,
(5)

Vzwzp(r,p,r,t)F(T,t)/ymc

(8/800P = - w2

D - 2°2P + (BZ)
where p(T,pT,‘t) is the longitudinal distribution function
of the bunch and the operator (&/8t) = (3/9t) - Ls can
be considered as a generalized total time derivative,
taking into account dissipative and diffusive effects due
to synchrotron radiation. Egs.(5) do not contain the
rms transverse beam radius o. and this shows that, in
dipole approximation, the betatron motion is not affected
by quantum excitation.

The longitudinal distribution satisfies the "reduced”
Fokker-Planck equation (&/8t)p = 0 and thus relaxes to
a Gaussian steady state p(T,pT). We can combine the

two coupled equations (5) to eliminate P, thus
obtaining:
2 + / + 2 =
(5/8t)°D 2cxz(6,6t)D W, D
= (p )Vzw plr,p JF(7,t)/yme. (6)
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This is formally identical to the equation of a damped
harmonic oscillator driven by a force proportional to
F(r,t), but the further dependence on the synchrotron
variables T and p_ has to be considered. To first order
in the ratio a,/w_, Eq.(6) has the following solution

t
.D[*r,pT,t) = [(BZ)VZ/Ymc] Jdt exp[~az(t—t')]

sin[wz(t-t')]f(-r,pT,t,t'), (7)

provided the function f(T,pT,t,t') satisfies the reduced
Fokker-Planck equation (&/8t)f = 0 and takes the initial
value f{1,p_.t,t) = p(T,PT)F(T,‘t) for t = t. Indeed the
r.h.s. of éq.(?) describes the effect of the collective
force experienced at all previous times t° { t by
particles with final synchrotron coordinates v and Py
Terms of second order in the ratjp a /w_,, which for
LEP at injection energy is about 1077, are negligible.

The function f(T,pT,t,t'), appearing in Eq.(7), can
be expressed through the Green's function of the
reduced Fokker-Planck equation:

(=3 o
de'J’de‘ G(T,pT,T',p
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Lt-t)

f(1,pT,t,t) = .

plr'.p_") F(7,t). (8)
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The Green's function G(T,DT,T',pT',t—t‘) represents the
transiticn probability, in a titme interval t - t°, from a
point with synchrotron coordinates 1" and pT' to a point
of coordinates T and p_. :

Since p_ is the only variable directly affected by
quantum excitation, the Fokker-Planck operator L_ does
not contain second order derivatives with respect to 7
(see Eg.(3)). This situation is similar to that
encountered in the theory of Brownian motion and leads
tc a complicated formula for the transition probability
[6]. Nevertheless, we can approximate G by

G(T'PT,T',pT',t—t‘) = (1/2nwscsz)
exp{-[(PT'F-)T)Z . wsz(r-?)z]/[zms%szu-Qz)]}, (9)

where ?(r',pT',t-t') and Sr(r',pT',t—t') describe the
deterministic damped oscillations of a particle with initial
coordinates 1 and p_' at time t = t', and Qt-t) =
exp[-as(t-t')]. The exact Green's function of the
reduced Fokker-Planck equation differs from (9) by
terms of order a_/w_, which become important only for
time intervals t - t' ‘much shorter than the synchrotron

period. Thus the approximate solution (9) can be used
to investigate the effects of radiation damping and
quantum excitation on the instability stop-bands at

currents below threshold, characterized by rise times
longer than the synchrotron period.

As in the previous paper (5], we focus our
attention on the function D (r) = B(T,HT-T], describing
the transverse dipole density at the fixed azimuth 8
after n machine revolutions. Then, from Eqgs.(4), (7)(,)
(8) and neglecting both synchrotron and betatron phase
advances over a bunch length, we obtain the following
integral equation

- 5 , (=] (=] [ee] 'co ]
Dn(T] = (e“BZ/E) jdeJdT jde b3 expl-kaZT)sm(szT)
~m - -~ k=0
Glr,p . T.p,  kTlp(1p ) fdx wixID__ (x>}, (10)

0

2 . . .
where £ = ymc™ is the relativistic particle energy.

3. RESONANT COEFFICIENTS

By a Fourier analysis, the integral equation (10) can be
reduced to the eigenvalue problem

Dq(v) = :Z qu(v) Dp(v). (1)

p=-w

Here D_(v) denotes the Fourier transform of the dipole
density "and the Fourier frequency w = {q*v)w_ has
been split into an integer multiple q of theo ring
revolution frequency W, plus a fractional tune v, whose

real part is in the range [- 1/2, 1/2]. The matrix
qu(v) reads

(=~}
qu(v) = K Zp(v)nfo Cn(v)Hn[c(q’v)]Hn[o(p’v)}, (12)
where K = | ele /2E is a coefficient proportional to the

bunch current and Z (v) is the transverse impedance of
the localized structure, i.e. the Fourier transform of
the wake-potential w(t). The functions H_[o(g*Vv)]
represent the so called Hermite modes [2] anrgi depend

on the dimensionless bunch length ¢ = S
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The resonant coefficients Cn(v) are given by

n sin{2n{v_-(nm)v_]}
n z s
Cn(v) =2 [m) -
m=0 cos{Zn’[v-l(Az'nAs)]}~cos{2n[vz-(n-2m)vsj)
(13)
where A_ = a /w_and A_~= us/wo, They carry all the

information azbouot the “reflection properties of the
synchro-betatron satellites v = v, * omv and show that
the imaginary frequency shift due to longitudinal
damping is proportional to the mode number |m].
Expanding the eigenvectors D_(v) of Eq.(11) in the
Hermite basis Hn[c(q’v)], we obtain a dispersion
relation giving the fractional tune v of the orthogonal
dipole modes as a function of the bunch current Ib

det { & - KC (v) MR (V) } = 0. (14)

The impedance matrix Mn (v) can be computed using a
broad band resonator model as in [5].

4. NUMERICAL RESULTS

We have plotted the imaginary part of v versus [ for
three different values of the betatron tune v_, chosen
so that mode coupling occurs approximately at the same
current below threshold. These figures have been
obtained by a numerical solution of Eq.(14), with v_ =
0.088 and with the other parameters corresponding to
LEP at injection energy [5]. In  particular,_ the
dimensionless dsamping constants are A_ = 3.5 107 and
b, = 7.0 107 Above threshold, the instability is
always due to the coupling between modes 0 and -1.

Fig.1 shows an instability stop-band associated with
the coupling between modes -3 and -1: we can identify
the wunstable mode as mode -1, since for vanishing
current the imaginary part of its coherent tune
approaches the value Az + A_. Actually this asymptotic
value is slightly different, because even for vanishing
current the Hermite modes are not exact eigenvectors of
Eq.(11). Fig.2 shows a stop-band due to the coupling
between modes -4 and 0 and, in this case, it is mode O
which becomes unstable. Finally, in Fig.3 we consider
the coupling between modes 5 and -1: here the
instability stop-band disappears, since the imaginary
part of v stays positive up to the threshoid current ! h-
We should mention that, for a given pair of coupling
modes, the width of a stop-band and the maximum
growth rate of the instability depend on the wvalue of
v, In particular, all the stop-bands occurring at very
low current near the resonant values v, T nov and v, =
/2 - n v, disappear.

in conclusion, starting from the Fokker-Planck
equation, we have computed the rise time of instabilities
due to transverse mode coupling for localized impedances
in presence of damping and noise. The approach is
similar to that based on the Vlasov equation [5], but it
shows the different role played by longitudinal and
transverse damping. Betatron oscillations have the same
imaginary frequency shift for all dipole modes, whereas
the shift associated with synchrotron motion s
proportional to the mode number. This gives rise to a
splitting of the imaginary parts of the coherent tune v,
thus allowing to identify the unstable modes. For high
order dipole modes, damping is so strong that the
instability stop-bands disappear completely.
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Fig.1 Coupling between modes -3 and -1: v, = 0.174.
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Fig.2 Coupling between modes -4 and 0: v, ® 0.185.
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Fig.3 Coupling between modes 5 and -1: v, = 0.322.



