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Abstract 

The computer program IMPASS approximately solves 
an infinite system of linear algebraic equations for 
the expansion coefficients of the general solution of 
the Maxwell equations derived in Ref.1. The coeffi- 
cients are found by inverting the matrix, cut to a 
certain finite size. The values of lonoitudinal and 
transverse impedances, for a given frequeicy and for a 
given number (e.g. m=O or m=l) of the azimuthal Fourier 
harmonic of the bunch density, are proportional to the 
zeroth coefficients of the solutions. Standard FFT 
routines are used to speed up the calculations of the 
matrix elements and terms in the right hand side of the 
equations. The stability of the solution, with respect 
to the matrix size and to the precision of the equation 
terms, is studied. The CPU time on a CYBER 875 
computer, needed to find both the longitudinal and the 
transverse impedances of bellows for one value of the 
frequency, is of the order of a second. 

1. Introduction 

The experience obtained from large storage rings 
like PETRA and PEP shows that a substantial part of the 
transverse impedance of a ring comes from the elements 
of the vacuum pipe other than RF cavities. Most of the 
increase is produced by bellows. Typically, bellows 
contribute to the ring impedance approximately as much 
as all the RF cavities together. Hence, one needs 
reliable and quick methods for the evaluation of the 
impedances produced by bellows. 

The computer code, described in the present paper, 
calculates both lonqitudinal and transverse imoedances 
of periodic axiaily symmetric smooth structures 
(bellows). All the calculations are made for the limit 
Y+=J (y is the Lorentz factor of a particle). 

The assumptions of periodicity and axial symmetry 
of the structure imply that the wall of the bellows may 
be described in a cylindrical coordinate system r,e,z, 
by a curve : 

r = b(z), 0 < z < L , (1) 
where L is the length of the boundary period and 

b(z+L) = b(z) . (2) 

The curve b(z) is assumed to be continuous and 
with a continuous finite derivative db/dz (Fig.1). 

t' 

Fig.1 - Schematic layout of bellows geometry and 
coordinate system. 

* On leave from SLAC, Stanford. 

2. Method 

IMPASS approximately solves an infinite system of 
linear algebraic equations for the expansion coeffi- 
cients of the general solution of the Maxwell equations 
derived in Ref.1. The coefficients are found by inver- 
tins the matrix. cut to a finite size. The values of 
the" longitudinal and transverse impedances, ZL and 
ZT for a given frequency w and a given mode number m 
(m=O or m-l) of the azimuthal Fourier harmonic of the 
bunch density, are proportional to the zeroth coeffi- 
cients 

ZLO 
zo =i;Bo (3) 

ZLl = i $ (i) (;I IJo (4) 

ZTl 
zo 

=i-Do , 
RnK (5) 

where Za = 377 Ohm is the impedance of vacuum 

n=2nR/L , (6) 

K = wR/c . (7) 

R is the reference radius and r and a in expression (4) 
are the radius of an observation point and the radial 
displacement of the charoe from the axis of the 
bellows. 

The choice of the reference radius R is more or 
less arbitrary. and it has been checked numerically 
that the answer-does not depend on it. One should, how- 
ever, bear in mind that the choice of R changes the 
function W(u) (see below) and might also influence the 
speed of convergence. One natural choice for R would be 
the average radius of the bellows, and another one the 
inner radius. 

3. Input 

The first line of input consists of up to 80 
alphanumeric characters, which will appear as a heading 
on the output. 

Then the following variables are read in via 
NAMELIST $OATA. 

ETA n = 2lrR/L (expression (6)). 
KAPPA K = @R/c (expression (7)). 
EPS E = d/2R, where d is the depth of corrugations. 
PRINT a logical variable preset to FALSE. If PRINT=T 

then all the values of intermediate matrices 
will be printed out. This option is used mainly 
for checking. 

IMAG a logical variable preset to FALSE. If IMAG=T 
the program will find a solution for the imagi- 
nary part of the matrix (if any). 

PLIM the order of the matrix is 2xPLIM+l. The 
program allows for values of PLIM up to 20. 

M is the number of points for the Fast Fourier 
Transforms, used for calculating the matrix 
elements. The program allows for M up to 512 
points. This, however, can be modified by a 
DIMENSION statement. The routine RFT requires a 
COMMON/FWORK/W(nnn), where nnn = 5*2m if 
M>129. IMPASS has nnn = 2560 i.e. for m=9. 

The boundary curve (1) is represented by dimen- 
sionless variables : 
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were done twice, once with a Gaussian integration and 
once using the FFT. 

The impedances should not depend on the initial z 
coordinate. It has also been checked that one gets the 
same results by substituting sine for cosine in the 
expression (10). 

It has already been mentioned that the results do 
not depend on the choice of the reference radius R. 

For the dipole mode (m=l) one out of the three 
boundary conditions is a consequence of the other two. 
This fact is used in IMPASS by checkina that all three 
equations are satisfied by the found set of coeffi- 
cients (although the third one is only approximate). 

The results of the calculations should not depend 
on the size of the matrices, or on the parameter PLIM, 
within certain limits. If PLIM is too small the accu- 
racy is poor, due to cutting off non-negligible terms. 
On the other hand, if PLIM is too large, the accuracy 
is lost due to the accumulation of machine errors 
(computational instability). 

u = 2TZlL (8) 

W = b/R . (9) 

The user must provide his own definitions of W(u) and 
its derivative WP(u) by modifying the two FUNCTION sub- 
programs FUNCTION W(U) and FUNCTION WP(U). 

By default the program uses the functions : 

W(u) = 1 + ECOS(U) 

WP(u) = -Esin(u) . 

4. output 

(10) 

(11) 

The listing of the input parameters is followed by 
a table of the solutions for m=l and m=O for all values 
of N, -NLIM < N ( NLIM (NLIM=PLIM). This is followed by 
a table of CHECKS, i.e. the solution is put back into 
the original equations and the resulting value is 
compared to the expected right hand side. 

5. Accuracy and running time 

The following table gives some idea of the accu- 
racy and the time taken by the CYBER 875 to do the 
calculations. For W(U) = 1.0 + EPS*COS(U), ETA = 30.0, 
KAPPA = 0.1, EPS = 0.12 and M = 256 : 

5 0.01994 1.0 set 
F 0.01977 0.01980 1.4 1.2 set set 

9" 0.01978 0.01981 1.6 1.7 set set 

10 0.01987 1.9 set 

Note that with the double precision test 
Do = 0.01980 when PLIM=20. 

D _ double precision (FFT) 
0 ___ single precision (FFT) 

_.a single precision (Gauss) 

i 
I 

program 
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Fig.2 - Accuracy of Dd in % versus PLIM for W(U) = 
l+ecosu and n = 30, K = 0.1, E = 0.12 for 
single and double precision calculations. 

6. Stability and accuracy tests 

A number of tests have been made in order to check 
different parts of the program. Using the function (10) 
the calculations of the matrix elements and the right 
hand sides of the equations were compared to the analy- 
tical calculations. Also the numerical calculations 

The computational stability of the results can be 
increased, for matrices of a larger order, by using 
double precision. The results of the stability depen- 
dance on the matrix size, for both single and double 
precision, can be seen in Fig.2 (note the suppressed 
zero of the abscissa). 

7. Results 

Figures 3-9, taken from Ref.1, illustrate the 
dependance of the coefficients Bn and Do on the norma- 
lized frequency K, for several different values of the 
parameters n and E. The boundary curve in these calcu- 
lations, is represented by the function: 

w = 1 + E + (4/n) ECOSU. 

The impedances, obtained from these results, agree 
quite well with those from calculations using the 
program TBCI [2]. 

Fig.3 - Coefficient Bo which is proportional to the 
longitudinal impedance, for bellows with 
boundary w=ltet(4/n)acosu as a function of 
normalized frequency K, for three values of 
parameter n : (1) r1=31.42, (2) n=20.94, 
n=12.57. Corrugation parameter E = 0.06. 
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Fig.4 - The same as on Fig.3, but for E = 0.09. 
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Fig.5 - The same as on Fig.3, but for E = 0.12. 
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Fig.6 - Coefficient B,' which is proportional to the 
m=l longitudinal impedance and to the transverse impe- 
dance multiplied by K, for bellows with the boundary 
w=1+~+(4/n)~cosu as function of the normalized frequen- 
cy K, for three values of the parameter n: (1) n=31.42, 
(2) n=20.94, (3) n=12.57. Corrugation parameter e=O.O9. 
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The same as on Fig.6, but for n=12.57, and for 
values of the corrugation parameter E : 

(1) ~=0.12, (2) c=O.Og, (3) ~=0.06. 
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.8 - The same as on Fig.7, but for n = 20. *94. 
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Fig.9 - The same as on Fig.7, but for n = 31.42. 


