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SATURATION OF A LONGITUDINAL INSTABILITY DUE TO NONLINEARITY OF THE WAKE FIELD* 

Samuel Krinsky 
National Synchrotron Light Source 

Brookhaven National Laboratory, Upton.N.Y.11973 

Abstract 

Self-sustained synchrotron oscillations are ob- 
served in electron storage rings. In general the theo- 
retical description of the saturation of an instability 
for large oscillation amplitude is a difficult problem, 
and techniques have not yet been developed which yield 
analytic approximations to the appropriate nonlinear 
Vlasov or Fokker-Planck equations. In this paper, a 
single point bunch interacting with the wake field from 
a single resonant mode of an RF cavity is considered, 
and the averaging method of Bogoliubov and Mitropolsky' 
is used to study the saturation of the initial exponen- 
tial growth of the oscillation amplitude, due to the 
nonlinearity of the wake field. The determination of 
the limiting amplitude of oscillation is discussed both 
in the presence and in the absence of radiation damping. 

Equations of Motion 

In a storage ring, the electrons in a bunch exe- 
cute synchrotron oscillations with angular frequency 
ws about a synchronous electron having energy Eo 

and revolution period To. Suppose there is only a 

single bunch of N electrons in the ring, and that this 
bunch is interacting with the wake field due to a reso- 
nant mode of an RF cavity. The resonant frequency of 
the mode is wr, its shunt impedance is R and the qua- 

lity factor is Q. The wake field w(t) vanishes for t < 
0, and for t > 0 is given by 

w(t) = 2l'R exp(-Tt)Lcoswrt -r 2Q sinwrtl (1) 

where T = w,/2Q. We shall assume that Q is large 

enough to allow neglect of the sin art term in Bq. 

(1). At time t = 0, the wake field w(O) = FR. 

Let us assume the bunch length is short compared 
to the wavelength of the resonant mode so the consider- 
ation of a point bunch is justified. We denote the 
time displacement of the point bunch from the synchro- 
nous particle by r(t), which is taken to be positive 
when the bunch leads the synchronous particle. Assum- 
ing the change in one revolution of the synchrotron os- 
cillation phase and amplitude is small, the difference 
equations describing the interaction of the bunch with 
a discrete cavity located at a particular azimuth in 
the ring can be replaced 
of motion: 

m a Ne 2 

G’(t) + o;T(t) = &- )- w(pT, + r(t-pTO)-r(t)), (2) 
00 p=o 

by the- differential equation 

where ac is the momentum compaction of the storage 

ring and e is the charge of the electron. 

It is convenient to 
variables: 

introduce the dimensionless 

S = cost, 

x(s) = w,r(s/w,), 

a = WrTo, 

u = usTo. 

w a Ne 2 

A r c 2l'R. - ,2 EoTo 
S 

We consider li = wsTo << 1, o = mrTo >> 1, and ITo on the 

order of unity. If Tr(t) << 1 for all times, then Bq. 
(2) is well approximated by: 

d2x(s)/ds2+x(s)=X y exp(-pTTo)cos(pu+x(s-pn)-x(s)), (3) 
p-l 

where the p = 0 term has been dropped since it only 
corresponds to a change of the stable phase. Introduc- 
ing action-angle variables J,B by 

4s) = JJO cos8(s), 
(4) 

dx/ds = - JJ(s) sine(s), 

we make the approximation, 

x(s - Pir) - x(s) = 6 (cos(8 - pu) - co&), (5) 

in Eq. (3), which will be valid for small enough p, if 
the wake field does not alter the synchrotron motion 
rapidly compared to the synchrotron frequency. .4ssum- 
ing that values of p for which Eq. (5) is violated make 
a negligible contribution to the sum on the right hand 
side of Eq. (3), the equations of motion for J and 0 
are found to be: 

m 
dJ/ds=- 2hfisinB 1 exp(-pFTo)cos(po+2J&in$ sin(e*)) 

P"1 
(6) 

m 

dD/ds=l- LOST 1 exP(-PrTo)cos(pa+2flsi+in(B+)). 
6 p=l 

The lowest-order averaging approximation is 
obtained by averaging the right-hand side of Eqs. (6) 
over 0 < e < 2x. This will be valid when X is small 
enough 70 assure that the wake field produces signifi- 
cant change in the synchrotron motion only on a time 
scale long compared to the synchrotron oscillation 
period. Upon averaging the right-hand side of Eqs. (6) 
over e, we obtain 

dJ/ds=ZXfiy exP(-pTTo)cos~inPoJ1(2~si~) , 
p=l 

(7) 

d@/ds=l- x iT 
6 p=l 

exp(-PTTo)si+inpnJl(2iSsi~), 

where Jl(z) is the Bessel function of order unity. 
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In the limit of small oscillation amplitude, JJ < 
1, Eqs. (7) can be linearized and we obtain 

m 
dJ/ds = XJ 1 

p=l 
exp(-pITo)sinpu sinpa , 

(8) 
m 

d’3/ds-1-i 1 
p-1 

exp(-prTo)(l - cospu)sinpa , 

which corresponds to an exponential growth of the 
action, J = exp(2s/w r 

s g= 
) and a shift in the 

oscillation frequency d6/ds = 1 - &W/W,. Defining 

the complex coherent frequency shift 

R = 6w + i/T (9) 
g= 

we see that Eqs. (8) imply 

exp(-pITo)sinpa(exp(ipu)-1) . ( 10) 

Writing this in terms of the impedance Z(w) = 2*(-m), 
which is the Fourier transform of the wake field, one 
finds 

Q= 
ieacIavwo - 

4nE w 1 ~(n~o+~s)Z(n~o+~s)-n~oZ(n~o)] , (11) 
OS nzl-rn 

* 

where w. = 2x/T, is the revolution frequency of the 
bunch. Eqs. (10) and (11) are the well-known results’ 
valid in the regime of exponential growth. 

The saturation of the exponential growth occurs 
because the Bessel functions appearing in Eqs. (7) are 
linear only for small values of their arguments. As 
the argument of the Bessel function increases, Jl(z) 
increases more slowly than linear, and it eventually 
turns over and decreases to zero and then negative 
values, The limiting value of the action J is deter- 
mined by the vanishing of the sum on the right-hand 
side of the first of Eqs. (7), assuring dJ/ds = 0. 

A Simplified Model 

In order to simplify the algebra in the following 
discussion, we shall keep only the p = 1 term in Eqs. 
(6) and consider the factor exp(-ITo) to be absorbed 
into the parameter X. Then Eqs. (6) reduce to 

dJ/ds = - 21flsinBcos(a + 2JSsin 5 sin(S - $)] 

(12) 
dB/ds = 1 - >0sec0sja + 2J.isin f side - J)] . 

Bogoliubov and Mitropolskyl have shown how the averag- 
ing method can be formulated to obtain a systematic 
asymptotic expansion in powers of X. To proceed, one 
considers the right-hand side of Eqs . (12) to be ex- 
panded in Fourier series, 

dJ/ds = 1 f G”(J)exp(ine) , 
n~-co 

(13) 

dB/ds = 1 + i T An(J)exp(in6) , 
“=-- 

and transformed action-angle variables I and i are 
introduced via, 

232 1 

J = I + X(1,$‘) + O(i’), 

e = pi + ~u$I,$) + o(i2) . 
(14) 

Then 5 and U are determined from the condition that the 
equations of motion for I and J, have the form 

dI/ds = AXo(I) + a2xp + 0(X3) ) 

(15) 
d$/ds = 1 + Ano + A-$(I) + 0(X3) , 

where the right-hand side of Eqs. (15) are independent 
of $. One finds that 

G (I) 
5=1: n exp(inb) , 

nfo in 
(16) 

A (I) 
U= 

n50 in 
n exp(in*) , 

and 

dG (I) 
dI/ds = AGO(I) - X2 z: [+ G-,(I)& + 

nfo 

Gn(I)A$)] , (17a) 

dA (I) 
d+/ds = 1 + XAo(I) - X2 1 [+-- 

nfo 
Gvn(& + 

An(I)Asn(I)] . (17b) 

The limiting amplitude of oscillation can be 
determined from Eq. (17a) without reference to Eq. 
(17b). Computing the Fourier coefficients G,(I) and 

An(I), we can rewrite Eq. (17a) as 

dI/ds = 2Xr%inacos f J1(z) + X’sin*P f (z ,a) , (18) 

where 

- 2 
f(z,a) = 2sin’a 1 J 

kxo 2k+l 
(a) + 2 cos2a 

and 

z = Zfisin(nl2) . 

Note that f(z,a) is always positive. 

(20) 

Let the radiation damping time for synchrotron 
OSCillatiOnS be ‘Cad, and for now suppose 1 is small 

enough to allow neglect of the second-order term, 

X2sin2u f(r.,a), on the right-hand side of Eq. (18). It 
then follows that 

1dI 4 Jl(UiI) 2 
--q- --- 
I dt 

‘lgr U/I 
9 ’ 

cad 

where l/rgr is the initial exponential growth rate 
in the absence of radiation damping, 

1 
AW 

7- 
= + usina , 

g= 

(21) 

(22) 



and we have made the small angle approximation sinV a 
u. Of course, sina is taken to be positive so that 
one has exponential growth, not decay. 

When rer < Trad 
the oscillation amplitude will 

increase until it reaches the limiting value 41, 

determined by 

Jl(pfio) 

UJIo 
,*. 

rad 

When T is not too much less than T 
gr rad 

dIo .a j8(1 - Tgr/Trad) , 

and when Tgr ci: Trad , 

P/IO si z1 , 

where z1 = 3.83 is the first zero of Jl(z). 

In the case, r gr ' 'rad' 
when the radiation 

(23) 

(2.4) 

(25) 

damping is negligible, it is of interest to keep the 
second-order term on the right-hand side of Eq. (181, 
so that we can determine the dependence of the limiting 
oscillation amplitude [IL on the initial exponential 

growth rate l/rgr. One finds 

TO JIL = (IO + ';- 
f(zl,d 

gr z1/Jo(zl)/sin2~ 
(26) 

where JIo = z,/u. 

Concluding Remarks 

Within the lowest-order averaging approximation 
the self-sustained synchrotron oscillation has the form 
r(t) = A sin wst, where the amplitude A is determined 

by the considerations of the previous section. The 
signal induced on a pick-up electrode located at a 
fixed azimuth of the storage ring is proportional to 
the bunch density 

p(t) = 1 6(t - nTo - Asin ust) 
n 

=- to f einWot i e-ikWstJk(nwoA) , (27) 

where w 
0 

= 2n/To is the angular revolution frequency. 

Although the synchrotron oscillation is sinusoidal with 
frequency OS, the higer-order sidebands at km 

S 
(k>l) 

will be observed on the pick-up for large amplitude A. 

We have made a numerical check of the averaging 
approximation by considering the recursion relations: 

Action-angle variables Jn,@n are introduced via 

ie 
a E JJne n = (eiu - 1)q + p, , (29) n n 

where K = 2(1 - COSU). In terms of a,, the recursion 

relations of Eq. (28) become 

a n+l = eiU(an + Xsinpn) . (30) 

2 
For X = 0, the action variable Jn = Kqn + p,(p, - Kq,) 

is a constant of the motion, but for A > o it increases 
with the initially exponential growth rate J, = exp(Xn). 

We have found numerically that in the case of K = 0.01 
and A = 0.002, the value of JJi for n> 20,000 fluctuates 

with a variation of less than 0.5% about 

an = 3.83 . (31) 

Initial conditions of qn = 0.1 and p, = 0 were taken. 
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