STUDY OF RANDOM AND SYSTEMATIC MUTLIPOLES IN THE SSC LATTIICE

Sam Heifets
University of Houston and
Texas Accelerator Center
2319 Timberloch Place
The Woodlands, TX 77380

Abstract

The expression for the tune shift and an orbit distortion is derived by the first order canonical transformation. The program based on these formulas is described and used for numerical comparison of the non-linear effects in the SSC lattices.

The results ace compared with analytic estimations. The choice of the main parameters of the SSC lattices is discussed.

The Formulas

The method of canonical transformation is a reliable method to derive accurate formulas for analytic estimations of nonlinear effects and for an efecient program for numerical analysis of such effects. This approach seems reasonable for first screening of parameters and can fill a gap between time-consuming tracking programs and too crude analytical estimations. With magnet field of a form
$B=1 / 2 B_{0} b_{n}(x+i y)^{n}+c . c$.
the following formulas have been obtained for the tune shift and the distortion $\Delta \varepsilon / \varepsilon$ with accuracy o($\left.b_{n}^{2}\right)$:
$\Delta Q_{x}=-\cdots R / 02 m_{X} / \varepsilon_{x} C_{m} b_{n-1}{ }_{x}{ }^{2 m_{1}} \sigma_{Y}{ }^{2 m_{2}} x_{x}{ }_{c}^{n-2 m_{1}-2 m_{2}}$
$\left(\Delta \varepsilon_{X} / \varepsilon_{X}\right)_{k}=\frac{2 \pi\left(m_{1}-m_{2}\right)}{N_{s} \varepsilon_{x} \operatorname{Sin}(\alpha / 2)} \underset{x}{ }\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$.
$<R / \rho \quad b_{n}{ }^{-1} \sigma_{x}{ }^{m_{1}+m_{2}} \sigma_{y}{ }^{m_{3}+m_{4}} X_{C}{ }^{n-m} \operatorname{Cos}(\beta+K \times)$,
where
$\sigma_{x}^{2}=\varepsilon_{x} / 2 \beta_{x}(s) ; \quad X_{c}=(\Delta p / p) \quad \eta_{x}$
$\mathrm{x}=2 \pi / N_{s}\left(\left(m_{1}-m_{2}\right) o_{x}+\left(m_{3}-m_{4}\right) Q_{Y}\right)$
$B(s)=\left(m_{1}-m_{2}\right)\left[\mu_{x}+0_{y}-\pi / 2-\pi Q_{X} / N_{s}\right]^{+}$
$\left(m_{3}-m_{4}\right)\left[\mu_{Y}+b_{y}-\pi Q_{Y} / N_{S}\right] ;$
$c\left(m_{1} m_{2} m_{3} m_{4}\right)=\frac{(N-1)!(-)^{m^{3}+(-) m 4}}{4(N-m)!m_{1}!m_{2}!m_{3}!m_{4}!}$
$c_{m}=C\left(m_{1}, m_{1}, m_{2}, m_{2},\right) ;$
$m_{1}, m_{2}, m_{3}, m_{4}$ are integers.
The emittances ε and initial phases b are related to the coordinates of the particle as following
$x=(\Delta p / p) \quad \eta_{x}(s)+\sqrt{2} \varepsilon_{x} B_{x}(s) \sin \left(D_{x}+\mu_{x}+0\left(b_{y}\right)\right.$
In the linear approxination the emittances ε are constant along the lattrice. Formula (2) gives the distortion at the exit of the k-th period, N_{s} is the number of periods per ring. The brackets $<>$ means an averaging along a period.

The Beta-functions β_{x} ((s), phase advances ${ }^{\mu} x^{\prime} y^{(s)}$ and $\eta_{x}(s)$ are determined for a linear lattice and ${ }^{\prime}$ given $\Delta p / \mathrm{p}$.

Analysis

The factor $\sin (/ s)$ in f. (2) describes the resonance enhancement of the distortion. For decapole errors there is a coupling resonance ($m_{1}, m_{2}, m_{3}, m_{4}$) = $(2,0,0,2),(0,2,2,0)$ which gives a big distortion near the diagonal $Q_{X} \sim Q_{\gamma}$. The resonance is narrow and goes down 10 times X ith $\mathrm{Y}_{Q_{X}-Q_{Y}} \mid \sim 0.05$. The similar
enhancement of the distortion exists also for sextupole errors in the second order in b_{2}.

The crude estimation of the nonlinear tune shift and distortion can be done using f.(1), (2). It gives tune shifts n dye to systematic mulitipoles
$(\Delta Q)_{s} \sim(R / Q) \quad \Delta x^{n-2} b_{n^{-1}}$
tune shift due to random multipoles
$\left.(\Delta Q)_{R} \sim \mathrm{~b}_{\mathrm{n}}-1\right\rangle(\Delta x)^{\mathrm{n}-2} / \sqrt{N_{c}}$
distortion due to systematic multipoles
$(\Delta \varepsilon / \varepsilon)_{S} \sim \pi / \operatorname{Sin} \alpha / 2(\Delta Q / Q)_{S}$
distortion due to randrm multipoles
$(\Delta \varepsilon / \varepsilon)_{R} \sim(\Delta \varepsilon / \varepsilon)_{S} \quad Q / \sqrt{N_{C}}$
Here N_{c} is the number of cells per ring, Δx is the efficient beam size $\Delta x \sim X_{c}+\sigma_{x} \sigma_{y}$.

The last formula shows, that the distortion due to randan multipoles can be comparable or even bigger than the distortion due to systematic multipoles.

The Program

The program was developed on the base of the formulas (1), (2). The program uses $\beta_{\mathrm{x}}, \beta_{\mathrm{y}}, \eta_{\mathrm{x}}$ functions as they are given by the program MAD $Y_{\text {for }}$ a linear lattice for a given $\Delta \mathrm{p} / \mathrm{p}$. The program can be used:

1. To calculate strength of two regular sextupole families in the lattice to cancel the linear chromaticity.
2. To calcualte the tune shift due to systematic or random multipoles of a given order. For random multipoles rms value of b has to be given.
3. To calculate the distortion. The result of this calculation can be plotted out on a phase plane or as distortion versus number of turns, or as variation of the distortion along a period to study the local distortion.

The program is rather fast. It takes 20 seconds of CPU time for tracking with sextupole errors instead od 16 minutes for tracking with MARYLIE under MAD for the same lattice on VAX 780. Of course, time increases with multipole order.

Results

The program was used to calculate nonlinear effects for three SSC sixfold lattices with insertions. The lattices are described in the paper < >. They were the same in all respects (including tune shift per period) except the half cell length and phase advance per cell. They were equal to ($140 \mathrm{~m}, 60^{\circ}$), ($140 \mathrm{~m}, 90^{\circ}$). There were 81.5 cell.s per arc and 4 kicks per dipole in the first two cases and 110.5 cells and 3 kicks per dipole in the lase case. Fractional part of the tune
per ring was close to 0.3 and $\beta^{*}=1 \mathrm{~m}$ in all cases. The results of the calculations are given in table I. In all cases b_{n} in dipoles was assumed to be equal too units (in units $10^{-4} \mathrm{~cm}^{-n}$).

Table I

		Q_{x}	Q^{2}	ΔQ_{x}
140,60	Regular b_{x}	97.30335	97.29750	-----
	Syst. b_{2}^{x}	97.30335	----	$\begin{gathered} -0.0776 \\ 0.4710^{-3} \end{gathered}$
	Syst. b_{4}	96.9985	96.9084	0.05082
	Rand b_{4}^{4}	97.3256	97.2995	-0.3710^{-2}
	Syst. b_{6}^{4}	96.7045	97.1331	0.09984
	Rand b_{6}	97.3028	97.2595	0.9410
140,90	Regular b	145.2979	145.2920	-----
	Syst. b_{2}^{x}			-0.0340 $-0.2610-3$
	Rand. b_{2}^{2}	-----	------	-0.2610^{-3}
	Syst. b^{2} Rand ${ }^{4}$	145.3089	145.2918	-0.18 ${ }^{0.0103}{ }^{-2}$
	Rand b^{4}	145.3089 145.1860	145.2918	-0.1810 0.018
	Syst. b_{6}	145.1860 145.2963	$\begin{aligned} & 145.3011 \\ & 145.2784 \end{aligned}$	0.2710^{-3}
	Rand b6	145.2963	145.2784	
110,90	Regular b	187.3008	187.2961	
	Syst. b_{2}^{x}		-----	-0.0148 -0.6010^{-4}
	Syst. b^{2}	187.2817	187.2651	0.31710^{-2}
	Rand b_{4}^{4}	187.3036	187.2949	-0.46 10-3
	Syst. b_{6}	187.2738	187.3125	0.4510^{-2}
	Rand b_{6}^{6}	187.2995	187.2936	0.21210^{-3}

Emmittances $\Delta \mathrm{p} / \mathrm{p}=0.510^{-3}$ and $E x=E \mathrm{y}=10^{-7} \mathrm{~m}$ ($X_{0}=0.44 \mathrm{~mm}$) were used. For random multipoles the Gaussian distribution was chopped off at 2σ. The table shows the tune shift per period ΔQ due to a given multipole error oniy (for sextupole it doesn't include tune shift due to regular sextupole families in the arc). The amplitude of distortion variation $\Delta \varepsilon / \varepsilon$ at IP is given in 256 periods.

Analysis of the data shows that the higher-order multipole shift and distortion significantly depend on the cell length and phase advance, making shorter latticfe favorable. The distortion due to random multipoles is of order of distortion due to the systeratic multipoles. The effect of dodecapoles is comparable with the effect of decapole errors, for displacement $X_{0}=0.5 \mathrm{~cm}$. There is a tendency to follow the analytic estimations given above, although there are significant difference, especially for dodecaples. Partially it can be explained by increase of number of different terms in the sum (1), (2) and interference between them, what is difficult to take into account in estimations. It shows, that analytic estimation are not very reliable for the system like SSC where there is no safety factor. So, the use of the simple program as described above seems very reasonable for preliminary screening of different parameters. In particular, the low-field SSC lattice has to use shorter cells, for example 115 m for half cell length.

$\Delta Q_{y} \quad \Delta \varepsilon^{\prime}$	$\Delta \varepsilon_{X} / \varepsilon_{x}$	$\Delta \varepsilon_{Y} / \varepsilon_{y}$
--	+ 0.016	0.016
0.0741	0.090	0.101
-0.245 10^{-2}	0.160	0.186
0.0648	0.1375	0.156
-0.33 10^{-3}	0.284	0.280
-0.0726 ${ }^{-2}$	1.435	0.940
0.6310^{-2}	0.397	0.437
----	0.022	0.022
0.0305 -2	0.047	0.059
-0.1097 10^{-2}	0.089	0.071
0.0164 -4	----	----
0.2810^{-4}	0.1851	0.1972
-0.011	0.457	0.539
0.2310^{-2}	0.129	0.151
	0.0278	0.0281
0.0131	0.0386	0.0364
-0.5310^{-3}	0.1093	0.1857
$0.517{ }^{10} 0^{-2}$	0.091	0.072
0.20110^{-3}	0.1026	0.082
-0.27 10^{-2}	0.134	0.125
0.42510^{-3}	0.041	0.045

CAMUNICAL TKANSEURMATIUN FROGKAC
LAITMEE TACL4090
SYSTEMAHIL SEXIURDLES. SQ二' UATTS

