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EFFECT OF LONG RANGE BEAM-BEAM INTERACTION ON THE STABILITY OF COHERENT DIPOLE MOTION* 
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The coherent efFect of beam-beam forces on the 
stability of the motion of beams as rigid bunches in 
a collider is studied by means of simulation. The 
number of bunches per beam is taken to be large, with 
many bunches colliding simultaneously within each 
interaction region. It is also assumed that they 
populate the beams uniformly, and that they are 
equally spaced. The interaction regions are all 
identical and evenly spaced. The collision forces 
are assumed to be one-dimensional linear kicks. 
Results for stability limits are presented, as a 
function of tune, for various beam configurations 
and several values of the crossing angle. 

Introduction 

The SSC has one Feature that may have an import- 
ant effect on its design: the fact that the beams 
have several thousand bunches makes the interaction 
between beams significant, so that beam stability is 
potentially afFected.[l] This, in turn imposes a 
restriction on the choice of tune, and may weaken 
the conclusions of tracking studies which ignore the 
beam-beam interaction. Basically, the effect arises 
from the fact that there are many bunches in a given 
interaction region simultaneously, so that they 
interact several times (with different strengths, 
which depend on the value of the crossing angle) 
before leaving. The induced transverse motion gets 
quickly compounded, and this has a potential effect 
on the stability and the choices of tune and cross- 
ing angle. 

Ideally, one would want to include, in beam-beam 
interaction studies, the effect OF the forces on each 
particle produced by the electromagnetic Fields of 
the other particles within its own bunch and of those 
with which it collides, in addition to the forces 
produced by the magnets and the walls of the beam 
pipe. This is a formidable task from the programning 
point of view, and, in any case, no computer exists 
now nor will exist within the SSC design time scale 
which would be able to produce significant results 
from such a program. 

In this note we present first results on the 
effect that the beam-beam interaction has on the 
stability of the beams. While we make (so far) many 
simplifying assumptions, the key ingredients of many 
bunches per beam and multiple, simultaneous, bunch- 
bunch interactions within all interaction regions are 
kept. We present results for several beam configurat- 
ions and crossing angles. While these results are 
preliminary, they do suggest an important effect on 
beam stability. 

Analysis 

Assumptions 

We consider here only the motion of the center 
.of charge of the bunches.[Z, 3, 4, 51 In practice, 
this amounts to treating them as rigid, disk-like 
objects. In this sense the effect is "coherent", 
since all the particles within a bunch move to 
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gether. This dipole approximation to the charge dis- 
tribution may be taken as the starting point of a 
more realistic calculation in which higher multi- 
poles are treated.I.6. 7, 8, 9, 101 Furthermore, we 
study the motion in one dimension only, so that each 
bunch is fully described by its transverse coordi- 
nate x and its slope x'. The bunches are evenly 
spaced and populate the beams uniformly. Both beams 
are identical. All the interaction regions (IR's) 
are also identical, as are the arcs between them. 
Thus the superperiod of the machine equals the num- 
ber OF IRIS. 

The configuration of the machine is therefore 
described by the number of IR's, the number of 
bunches within an IR, and the number of bunches 
within an arc. Thus we have 

Nb = Nir(m+m') (1) 

where Nb is the number of bunches per beam, Nir 
is the number of IR's, m is the maximum number of 
bunches that can fit simultaneously within an IR and 
m' is the minimum number of bunches that can fit 
simultaneously within an arc. 

The bunches are assumed to interact only within 
the IRS. A given bunch interacts every time it moves 
a distance L/2, where L is the interbunch distance. 
Within the IR, the bunch is drifted between inter- 
actions by a simple 2x2 drift matrix O(L/2). In the 
arcs, it is transported by a phase advance matrix T 
from the end of an IR to the beginning of the next 
one. The matrix T satisfies the relation 

rcOS(wp*) B*sin(nR*)-/ 

+.uq T qy)= (2) 
-sin(nR*) cos(~R*) 

8" 
L J 

where R* is the tune between the centers of two 
neighboring IRS and B* is the value of the beta 
function at the center of the IR. 

There is one "head-on" collision at the center 
of the IR plus several "long-range" interactions 
away from the center. We assume these interactions 
between bunches to be kicks which can be linearized 
as follows: consider two opposing bunches, one from 
each beam, whose coordinates are (xl,x'l) and 
(x2,x12). The xs and x's are measured relative 
to the respective design trajectories. They *collide" 
at a point-where the distance between the design 
trajectories is d. If the distribution is Gaussian, 
the slopes change according to xl1 + x'l + Ax’, 
and x12 + x12 - AX’, where 

Ax’ =+ 1 
E(x,o) = 1-exp(-x2/202) 

X/202 
AX = X1-X2 

(3) 
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The parameter a* is the efFective transverse 
size of the beam at the center of the IR. The effec- 
tive "focal length" f determines the strength of the 
kick. For the head-on collision, d=O, a = (I* and 
f=f* . For the long-range interactions, 02 = a*2 
(lts2/B*21 where s is the distance from the collision 
point to the center of the IR; 
f=f*(02/0*2), (see eq. (5)). 

C is related to f* by 

For the purposes of our simulation, we linearize 
the above expressions about AX=O, and assume the 
following values for the parameters: u*=7 urn, R* 
=l m, L--15 m. Then the expressions for the kicks 
are well approximated by the following: 

head on: AX’ =&AX 

1 
long-range: Ax’ = - +p Ax 

(4) 

where the parameter p = 2(cr*/d)2. The distance d 
between the design trajectories at the collision 
point is determined by the beam configuration, 
crossing angle and interbunch distance. 

The difference in sign between the head-on and 
long-range kicks arises from the shape of the force 
function E, eq.(3): close to the origin, the slope 
is positive, but it is negative out in the tail. In 
the linearized form OF the kicks, it is obvious that 
Ax’ is proportional to this slope. 

Instead of the parameter f*, we use a dimension- 
less one, 

(= -& = 
R*Nro 

4ny0*2 

(5) 

where N is the number of particles per bunch, r. 
is the classical radius of the particle and r is the 
usual relativistic factor. 

Method 

In practice we start the simulation by assigning 
values to n*,t, B*, L, CI* and the crossing angle a. 
Then we assign random values, within a certain range, 
to x and x' for all the bunches. We go around the 
ring bunch by bunch either kicking it, drifting it 
within the IRIS. or transporting it through the arcs; 
this constitutes one step. At the end of this step, 
all bunches have moved a distance L/2, and we repeat 
the process until a full turn is completed. After 
each turn we evaluate the maximum amplitude x for 
all the bunches at the center of the IRS: if this 
exceeds a certain value, we call the motion unstable. 
If no instability is found after a large number of 
turns, we call the motion stable. In this way we can 
find a stability boundary in the ( <,u*)-plane for a 
given beam configuration. 

For linear kicks it is also possible to study 
the stability of the beams by finding the full tran- 
sfer matrix for one turn, and diagonalizing it. If 
there is an eigenvalue greater than one in absolute 
value, the motion is unstable; otherwise it is stable 
(the simplecticity of the matrix ensures that it is 
not possible to have all eigenvalues less than one 
in absolute value, so there can not be damping). We 
have used this method as a check for one beam con- 
figuration only, as explained below. 

Results --_ 

We present here results for only three 6 earn con- 
figurations. The simpler one has Nir'2, m=2 and 
m'=O. Thus there are 4 bunches per beam. Each 
bunch interacts three times within each IR: there 
is one head-on collision at the center of the IR, 
and two long-range interactions at either side of 
the center. Figure 1 shows the stability limits for 
various crossing angles. We plot the maximum value 
of < for which the beam is stable vs. the tune v of 
the entire machine. The periodicity of the graph is 
one unit OF tune, so we plot only two cycles. For 
50 Rrad crossing angle the limit is given by the 
curve ACE. The parameter p takes on the value 6.97x 
10e4 for the long-range interaction closest to the 
center of the IR. The region above the curve is 
unstable, below it is stable. For 10 Rrad the 
corresponding curve is ABE. In this case p=l.74x 
10e2 for the long-range kick closest to the center. 
As the crossing angle is increased, the right side 
of the curve becomes steeper, until it becomes 
vertical. All this means in our calculation is 
that, in this limit, the long-range interactions 
have zero strength, and only the head-on collision 
is present. Thus the curve AD is also the stability 
limit for the 2-bunch per beam configuration Nir=Z, 
m=l, me-O. In this case there is a simple analytic 
expression for the curve [2,3]. namely, tan(wu/2)/4%, 
with which our simulation agrees. The right side of 
the curves (BE and CE), with negative slope, is 
caused by the destabilizing effect of the attractive 
long-range interactions, while the rising edge (AB, 
AC, AD) is due to the repulsive head-on kicks (For 
beams with oppositely charged particles the curves 
are reversed, i.e., points A and E are interchanged). 

Figure 2 shows the corresponding results for the 
36-bunch per beam configuration Nir"6, m=m'=3. In 
this case each bunch interacts a total of 5 times 
within each IR. In this case the periodicity of the 
graph is 3 units of tune, and we show only one cycle 
(the tune is. again, that of the entire ring). For 
50 Rrad, the stdbility curve is ADA'C'A"C"E. For 10 
Rrad, the attractive long-range interactions have a 
stronger destabilizing effect, and the stability 
curve is, in this case, ADA'D'A'D"E. In the limit 
of infinite crossing angle there is only a head-on 
kick per IR, so the stability curve corresponds to 
the 6-bunch per beam configuration Nir'6, m=l, 
m'=O, which is given by ABA'B'A'B". In this case 
there is also a simple analytic expression [ll] for 
the stability curve, with which our result agrees. 

Figure 3 is similar to the previous one except 
that it corresponds to the beam configuration 
Nir=6, m=5, m'=l. The larger number of bunches 
within the IR's have a stronger destdbilizing 
effect, which manifests itself in downslope curves 
farther away from the vertical line. This effect 
will be even more pronounced for the SSC, which is 
expected to operate at m-26. 

Remarks 

As mentioned above, we have also studied the 
beam stability by finding the Full transfer matrix 
and diagonalizing it. If there is at least one 
eigenvalue greater than unity in absolute value, the 
beam is unstdble; otherwise it is stable. This is 
not a convenient method OF prograrmning because every 
beam configuration requires a difFerent matrix. 
Besides, the matrices, of dimension 4Nbx4Nb, become 
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too large in most cases of interest. However, 
we have used this method to verify the simulation 
results for the particular beam configuration Nir=Z, 
m=3. m'=O. In this case, the results of both methods 
agree within the precision of the computer (these 
results are not shown here). 

We have also done another "experiment" on our 
simulation program: we have replaced the drifts 
within the IR's by appropriate phase advance matrices 
corresponding to the motion between collisions. In 
this case there is no clear distinction between arcs 
and IR's so the stability pattern should reflect 
the configuration of a beam with many more IR's. 
This is indeed what we observed: the sawtooth shape 
of the curve remains, but the periodicity is 
increased. For the configuration Nir'2, m=2, 
m'=O, the pattern takes on a periodicity of 2 units 
in tune, while for the configuration Nir'B, m=m'=3 
the periodicity becomes 36 units of tune. 

Conclusions 

Even though we have made many simplifying 
assumptions, our results show the eFfect of the 
long-range coherent beam-beam interaction on the 
stability of the beam. Generally the stop-band 
width is increased significantly for small crossing 
angle, and therefore has a potential effect on the 
choice of tune. 

Admittedly, the parameters used here are not 
realistic for the SSC. For instance, the SSC is 
expected to operate at a value of { =0.005, and 
therefore our simulation, if taken at face value, 
does not restrict the choice of tune significantly 
except near integers. We have taken into account 
only the dipole motion of the bunches. However, 
each higher multipole approximation to the motion is 
expected to introduce its own stop-band. The non- 
linear character of the beam-beam force is not 
expected to change significantly the stability of 
the dipole motion, but it will excite higher order 
multipole motion. If the effect we have observed 
and described here persists to higher order multi- 
poles, it may seriously restrict the working point 
of the SSC. We are presently extending our simula- 
tion to include these effects, and the results will 
be presented elsewhere in the near future. 
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