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Abstract 
Altho’Jgh it is well known that accelerating a 

cyclotron beam through an integral resonance generates 
a coherent oscillation of the beam, it is much iess 
widely known that such oscillations can also be 
produced just by rapidly skirting the same resonance. 
The latter will occur whenever the perturbing field or 
the radial (vertical) tune changes so rapidly in the 
vicinity of the resonance that the accelerating beam 
cannot smoothly follow the resultant non-adiabatic 
shift of the equilibrium orbit. A straightforward 
analysis of these effects leads to a simple formula 
for the resultant growth of the oscillation amplitude. 
This formula is applied to an example recently found 
in superconducting cyclotrons when the radial tune 
dips rapidily, but briefly, down close to unity. 
Applications to other cyclotrons are also considered. 

1. INTRODUCTION 
Most nonrelativistic cyclotrons make use of the 

” r = 1 resonance to generate a coherent oscillation of 

the bean. Acceleration through this resonance is 
frequently used in the extraction process where the 
resultant coherent oscillation helps the beam to clear 
the septum and enter the electrostatic deflector. 

In the central region, this resonance phenomenon 
is often used to adjust the centering of the beam. In 
certain cases, however, the coherent oscillation is 
produced by a rapid skirting of the resonance rather 
than an acceleration through it, although the 
differer.ce is not always clear. 

In the ‘central region of the Triumf cyclotron, 
for example, an isochronous field is used rather than 
a magnet cone, and the resultant value of (~~-1) 

remains above zero even at the injection energy.’ But 
in this case, the acceleration process complicates the 
situation during the early turns since, in addition to 
pr0dJCir.g needed vertical focusing, it also tends to 
drive tne radi.*l oscillations irc.0 a stopband vhere 

(v,-1) takes on imaginary values. 
2 

A clear-cut example of the resonance skirting 
phenomenon has recently been found in superconducting 
cyclotrons when there is a large difference in current 
in two adjacent trim coils. The resultant change in 
field gradient produces a fairly sharp dip in the \J~ 

vs. E curve which temporarily brings the value down 
close to unity. 

This type of behavior is evident, for example, in 
the ur curve shovn in Fig. 1 which was obtained in the 

case of C 
4+ ions having a final energy of 30 MeV/A. 

Here the value of vr drops from 1 .065 at 20 MeV/A down 

to 1 .027 at 22 MeV/A and then rises to 1 .082 at 24 
MeV/A. 

The resonance skirting phenomenon can be readily 
demonstrated by examining the results from computed 
orbits. Fig. 2 shows, for example, a plot of p, vs. x 

for one such orbit between 19 and 25 MeV/A where the 
energy gain per turn is 70 keV/A. The (x ,p,) points 

here give the deviation of (r,p,) from the equilibrium 

orbit (EO) value at each energy, and we should note 
that all orbits are calculated in a realistic magnetic 
field which includes, in particular, a first harmonic 
(n=l) component having an amplitude b, = ‘1.3 Gauss in 
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this region. It is this component, of course, which 
drives the resonance and which Ls also responsible for 
the effects considered here. 

The solid curve in Fig. 2 represents (x,px) 

points plotted once per turn uith every tenth turn 
marked by a cross. For the first 14 turns between 19 
and 20 MeV/A, the points execute a very small loop, 
which indicates that the orbit is very well centered 
on the “accelerated” EO. For the next 27 turns, the 
points trace oJt a second loop and arrive at 22 Me1114 
where the vr curve in Fig. 1 shows a pronounced 

minimum. At this energy, the curve in F:g. 2 exhibits 
a cusp, which indicates an abrupt change in its 
development. 

From here on, the curve swings rapidly outward 
and ends on a much larger loop having a radius of 
about 0.8 mm. Thus, if this orbit represented the 
central ray of a cyclotron beam, one would observe 
that the beam developed a coherent oscillation with an 
amplitude of about 0.8 mm between 20 and 24 MeV/A. 
Clearly, this effect results from the resonance 
skirting described above. 

.4 fairly simple theory has been developed which 
allows one to calculate the coherent amplitude 
produced either by traversing or by rapidly skirting 
any integral resonance. The results can be put into a 
form which explicitly distinguishes between an 
adiabatic and a non-adiabatic ‘process. 
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Fig. 1 PlOL of vr (left scale) and va(right scale) 

vs. E for a magnetic field desigr.ed to accelerate C 
4+ 

ions to 30 MeV/A. The vr curve exhibits a pronounced 

minimum near 22 Me\‘/A, and this rapid change in v r 
leads to the resonance skirting effect. 

0018-9499i8511000-2285$Ol.C00 1985 IEEE 

© 1985 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



MSU -85- 169 

30 MeViA f3,=3.5 T 
00 .BI 82 83 

1 
22 MeWA ‘\I\, 

J 
\\ 

: 

2 

: 

5 

t 

; 0’ 

z 4’ 

z 

J 

Fig. 2 The solid curve represents (x,px) points 

plotted once per turn for an orbit accelerated from 19 
to 25 MeV/A with an energy-gain per turn qV = 70 
keV/A. Crosses mark the points on every tenth turn. 
The orbit depicted here starts out very well centered 
and ends up with an oscillation amplitude AA = 0.03 
inch as a result of skirting the vr = 1 resonance. 

Note that 3, here is actually px/mw. 

2. SASIC THEORY AND RESONANCE TRAVERSAL 
The theory used here is simply an extension of 

that used in a previous paper concerning the 

perturbations produced by gap crossings.3 Here again 
we start from the smooth approximation equations of 
motion: 

dpx/dO = -v2(xp/R) + f(O), Cla) 

dx/dO = (Rpx/p) + g(O), (lb) 

where pi = vr here, and where p/R = qBC(R) is almost 

constant. 
The terms f(O) and g(O) represent the 

perturbations produced by field errors and gap 
crossings. The latter were discussed at length in a 

previous paper, 3 and we now consider in more detail 
the effect of a field error ABz given by 

ABz = I bn(R)cos(nO-Gn(R)), (2) 
n 

which is evaluated at the average radius R. In this 
case, f(O) = qRABz. 

We next introduce the rotating vector 

X = x + iBp 
X’ 

(3) 
;Ihere 8 = R/pv. When there are no perturbations, the 
solution can be expressed in terms of standard action 
and angle variables, J and I), as follows, 

X(O) = (2J5)% hi? (ha) 

Thus for example, the (x,p,) points plotted in Fig. 2 

rotate clockwise by an angle 2n( v-l ) per turn in the 
absence of perturbations. The action J is, of ccurse, 
an adiabatic ir.variant. 

The differential equation for X follows directly 
from (l), namely, 

(dX/dC) + iuX = G(0) + e(X-X*1, (5) 

where G(O) = g!O) + iBf(n), (6) 

and where E = 6’/28, with 5’ = dB/dO. 

The extra e term leads mainly to the adiabatic damping 
factor Kwhich occurs in X of (4a), and since this 
factor changes so little over the energy range of 
interest here, we snail henceforth drop this E term. 

Under these conditions, the complex oscillation 
amplitude A(O) remains constant when S = 0, where 

A(O) = X!O) ei*, (7) 

with $ given in (4b). In terms of this amplitude, 
integration of (5) then yields 

A(0) = Ai + iC(O) ei’ do, (8) 

where Ai is the initial amplitude, and where the 

integration runs from Oi to 0. This simple formula 

shows directly how the perturbation affects the 
amplitude. 

The perturbation G is next written as a fourier 
series: 

G(O) = ; Ck(R) eqiko, (9) 

where the sum extends over k = 0, +l, +2, etc. 
Inserting this series into (8) ab’ove, we find 

c 

A(O) = Ai + I: JGk(R) e :(I) -kd! do, 
(10) 

k 
and we note that in the vicinity of v=n, the term with 
k=n predominates. In particular, for the field error 
given in (Z), we obtain 

G,(R) = i(Rbn/ZvBO)exp(i&n). (11) 

To obtain the complete Gn, the contribution of the gap 

crossings should be added on. 3 

Because of the acceleration , R and hence Gn 

depends indirectly on 0, but this dependence is 
generally weak except near the center of the 
cyclotron. In this connection, we note that when R is 
smaller than the magnet gap, the amplitude bn falls 

off to zero in proportion to Rn. 
Thus, even though v=l at R=O for an isochronous 

field, the perturbation is ineffective there since 
G,=O at R=O. In this case, the resonance can only be 

skirted and even then, the effect will occur at a 
radius comparable to the magnet gap. These 
conclusions are consistent with the calculations and 

measurements carried out for the Triumf cyclotron,’ 
but as noted above, the picture here is somewhat 
clouded by the gap crossing effects. 

We first apply the formula (10) to the old 
problem of resonance traversal. For this purpose, we 
assume that close to the resonance v=n, the value of u 
can be approximated by 

v = n + u'(E-E ) 
r' 

(12) 

where ‘J’ = dv/dE is evaluated at Er, the resonance 

energy. 
where ‘$I = Jvde. (4b) 



We now single out the term in (10) with k=n and 
consider its effect alone. In this case, the integral 
reduces to a complex Cuassian or two real Freznel 
integrals. Using Gn from (111, the resultant increase 

in oscillation amplitude is then found to be 

IhAl = (nRbn/nBO)(qVlv’I)- +, (13) 

where qV is the energy-gain per turn, and where all 
quantities are evaluated at the resonance. 

This result agrees in all respects with that 
given by many other authors except that some of them 
manage to obtain an extra factor of u% Note that in 
the central region, the gap crossing perturbations 
cited above are often important and should then be 
included. Note also that if the resonance occurs in 
the vertical motion with “a = n, then the final result 

is the same except that bn becomes the amplitude of 

zhe nth harmonic of ABr for z-0. 

3. DISPLACED EO AND RESONANCE SKIRTING 
The formula (10) for A(G) does not exhibit the EO 

displacement produced by the perturbations. That is, 
the important amplitude is the one characterizing the 
oscillations about the displaced (or accelerated) EO. 

To obtain this amplitude, we carry out a partial 
integration of (10) and thereby obtain 

A(O) - ai + A eo - C ~(dCk/dC)ei(“-kD)do, (14) 
k 

where ‘k = -iCk/(v-k), (15) 

and, A - (3-Y Cke-‘k”)e”. (16a) eo k 
That is, the coordinates of the displaced EO are given 
by the vector 

Xeo(0) - Aeoedi' = ; Ckeviko, (16b) 

in accordance with (7). 
This formula for A(B) now exhibits the 

contribution from the displaced EO which includes, in 
general, the effect of the gap crossings. Note that 
the partial integration used above requires that v+n, 
and must therefore be modified somewhat if the 
resonance “=n is actually traversed. This can be 
accomplished simply by isolating the term with k-n and 
treating it separately as in the preceding section. 

The modified formula (1 4) above serves two 
purposes. First, it allows one to calculate directly 
the reduced amplitude a(0) defined by 

a(0) = (X(O) - Xeo(0))ei’ = A(o) - A 
eo’ (17) 

which fulfills our objective. Thus, if E is constant, 
then dCk/dG = 0, and a(O) = ai, just as expected. 

Second, (14) shows the distinction between an 
adiabatic and a non-adiabatic process. In the former 
case, every term in the sum is relatively small and 
oscillates rapidly, so that a(O) remains constant on 
the average. Thus, under adiabatic conditions, the 
accelerating ions will (except for small fluctuations) 
smoothly follow the changing displacement of the EO. 

By contrast, a non-adiabatic process is 
characterized by.a persistent increase in a(B) arising 
from the integral in (14) with k-n. To see this more 
clearly, we examine this term separately. From (15) 
and (ll), we have 

C,(R) = (Rbn/2v(v-n)Bo)exp(i6n), (18) 
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which shows that dCn/dB will be exceptionally large 

under the conditions described in the abstract for 
rapidly skirting the v-n resonance. 

To obtain a formula for the growth in amplitude 
in a convenient form, we replace 0 by E in 
integration by setting d0 = XdE, where A = 2rr/qV. 
resultant growth in amplitude obtained from (14) 
becomes 

the 
The 

then 

Iha( = If(dCn/dE)eig dEl, ( 

where g(E) = Aj(v-n)dE. (1 9b) 

9a) 

This shows directly that as qV increases, the process 
becomes less adiabatic . Conversely, when qV iz very 
small, i and hence $ becomes very large, 30 that the 
integral becomes negligibly small, as expected. 

Fig. 3 show8 a plot of [Aal as a function of qV, 
the energy gain per turn. The solid curve was 
calculated from the theoretical formula (191, and the 
main contribution in the factor (dC,/dE) in this case 

come8 from the variation of vr uith E shown in Fig. 1. 

The plotted points in Fig. 3 were extracted from 
computer data like that given in Fig. 2. As can be 
seen, the agreement between the theory and the data is 
fairly good considering the simplicity of the theory. 

We should note in conclusion that this phenomenon 
could influence the choice of first harmonic field 
bump used in the extraction process. That is, the Aa 

found here must be added vectorially to the amplitude 
growth subsequently produced when the beam traverses 
the ur = 1 resonance in order to obtain the total 

amplitude of the coherent oscillations. 

* This work supported by the National Science 
Foundatlon under Grant No. PHY-83-12245. 
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Fig. 3 Comparison of theory (solid curve) and 
computed orbit data (circled points) for the amplitude 
growth AA as a function of the dee voltage V, in 
keV/A. AZ V increases, the resonance is skirted more 
rapidly, and the process therefore becomes less 
adiabatic. 
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