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Violations of Liouville's theorem have been 
observed in various tracking studies employing pro- 
grams based on a second order matrix ray trace [I]. 
This is because the truncated Taylor's series trans- 
formation used by the codes in question is not canon- 
ical. We describe a simple method, based on a gene- 
rating function, that brings the ray trace to canon- 
ical form. 

This method utilizes the second order matrix 
elements provided by existing beam optics programs, 
and mav be imolemented by the use of a few FORTRAN 
subroutines. 'As an example, the program DIMAT [Z] 
has been modified to accept the symplectric ray 
trace; results obtained using both symplectic and 
nonsymplectic transformations are compared. 

Choice of Co-ordinates 

The coordinates x.x',y,y',$,.& employed by most 
matrix programs are not an exactly canonical set (as 
they cannot be described by a Hamiltonian system 
which leads to the Corentz force law without approxi- 
mation). In order to insure the result of any calcu- 
lation is obtained in a canonical fashion, we will 
use coordinates x,p,,y,py,t,pt, where x and y are 
transverse displacements, px and p their conju- 
gate moment, t is the time of flig t deviation of a . $I 
nonideal particle relative to the synchronous part- 
icle, and pt is -(energy deviation) of a nonideal 
particle relative to the synchronous particle. 

These two sets of coordinates are related by the 
following (noncanonical) transformation. 

x=x 

PX 
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Here, 0 = v,/c and Lo is the design orbit 
length in the accelerator, element or beamline under 
consideration. 

Second Order Matrix Transformation --- 

Most existing matrix codes employ transforma- 
tions of the noncanonical variables (x,x',y,y'.e,&), 
which may be written as follows. 

27 

zi= 1 Aijvj 
j=l 

i = 1, 2, 3, 4, 5. 6 (2) 

-- 
In this relation, i = (x,x',y,y',T,T) is the image 
of z = (x.x',y,y' ,?,,a) under the second order trans- 
formation, and v is the following 27-component 
vector. 
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v = (X,X',Y,Y' ,~,~,x~,xx~,xy,xy’,x~~,xd,x~~,x~y,x~y~, 

.,., ~2,86,62) 

Equation (2) is a nonsymplectic transformation of 
noncanonical variables. (The nonsymplecticity 
results from the truncation of a Taylor's series, 
the first two orders of which are represented by 
(2).) That (2) is a nonsymplectic transformation 
may be seen by computation of the Poisson bracket 
[TI, X']; if [x, x'] ~1, we find [X, ??'I = 1 t 
(second order terms), in violation of the symplectic ' 
condition. Thus, (2) is symplectic only to second 
order. 

We seek a canonical transformation (i.e., a sym- 
plectic transformation of canonical variables), 
which reproduces the results of (2) through second 
order (the advertised accuracy). As a first step, 
we rewrite (2) in terms of canonical variables using 
equations (l), to obtain a nonsymplectic transforma- 
tion of canonical variables. In practice, as (2) is 
accurate to second order only, equations (1) may be 
inverted and expanded to second order in the canon- 
ical variables, and the results for x, xl.... in- 
serted in (2) to obtain a transformation of the fol- 
lowing form. 

27 

ii = c AijWj i = 1, 2, 3, 4, 5, 6 (2’) 
j=l 

-- -- 
Here.c= (x,px,y,py,t,Pt) is the image of i= 
(x,px,y,py.t,pt) under the nonlinear transformafion 
(2') and w is the following 27-component vector. 

w = (x.Px,Y.Pt't.Pt*x2*xPxJYJPy~xt*xPt*P;*PxY? 

2 2 
. . ..t JP,,P,) 

Equation (2'). like equation (2), is a nonsym- 
plectic transformation, but is in terms of canonical 
variables and will reproduce all results of equation 
(2) through terms of second order (the advertised 
accuracy of either (2) or (2')). 

Use of a Generatinq Function 

It is possible, through the use of a generating 
function, to obtain a symplectic transformation of 
canonical variables (i.e., a canonical transforma- 
tion), which reproduces (2') through second order : I 
while remaining symplectic to all orders. We decom 
pose (2') into the following pair of transformations. 

6 

j-i = c Tiij i j 

j=l 

27 _. 

E"j = F,'jkWI; 

(3a) 
i = 1. 2. 3, 4. 5, 6 

j = 1. 2, 3, 4, 5, 6 (3b) 
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The notation here is as in equation (2'). Equa- 
tion (3a) is linear; by construction the 6x6 
("linear") portion of A is a symplectic matrix. The 
matrix B is defined as follows. T 

6 

I9 
jk = ~ (A-l)j,~~~k 

9. =l 

Here. (~1) is-the inverse of the 6x6 (linear) 
part of the A and Aek is the full 6x27 matrix. By 
COnStrUCtiOn, Bjk = djk for j.k=l. 2,..., 6; that 
is, the transformation (36) differs from the identity 
only in second order. 

We now seek a generating function F such that 
the following equations reproduce (3b) though terms 
of second order. 

ii = aF(q,p)/api 

Pi = aF(q,i)/aqi 

(4a) 

i = 1. 2. 3 

(4b) 

In relation, q=(x,y.t) and p=(px,py,pt) with 
similar definitions for ';r and F. As we wish to repro 
duce (3b) only to second order, and as (3b) is close 
to the identity, we may take 

F(q,;) = 5 q.P- + F3(q,i;) . 
i=l " 

Here, F3 is a homogeneous polynomial of order 3 in 
the components of q and 5. Then, equations (4) read 
as follows. 

;ii = qi + aF3(q,F)/aii (5a) 

pi = pi + aF3(qsp)/aPi 
i = 1. 2, 3 

(5b) 

Solving (5) to second order by iteration for $(q,p) 
and E(q,p) and comparing the result to equation (3b) 
specifies the derivatives of F3 in terms of the 
Bij. 

aF3(q,P)/aPi = 5 '2i-l,jwj 
j=7 

i = 1, 2, 3 

27 
aF3(q,p)/aqi = - C B2i~j 

j=7 

Here, w is as in equations (2') and (3b). Use 
of these derivatives in equations (5) give the fol- 
lowing "symplectified" transformation. 

;ii = qi + 
5 B2i-l,j"j (6a) 
j=7 

i = 1, 2, 3 

(6b) 

Here, u=(x,~x.Y.~y,t.i;t.x2.wpx’... ,t 
2 - -2 

.tPt'Pt ). 

Equations (6) reproduce equations (3b) through 
second order, and are symplectic to all orders. 
They are therefore a canonical transformation which 
may be used to replace the original noncanonical 
transformation (2) in a second order matrix program 

PIograming Considerations 

To implement this method in a standard matrix 
program will require three types of routines. The 
first type must convert the variables x,x',... used 
within the program to canonical values x,p,.... 
The second must convert the matrix elements Aij 
used in the nonsymplectic ray trace (2) to the 
matrix elements Aij and Bij of equation (3). 
which will be used in the svmolectic rav trace 
defined by equations (3a) aid'(6). M 

The final type of routine actually performs the 
ray trace. This may be done by solving the non- 
linear system (6b) for E(a.p) and usina the result 
in (6a) to obtain.?j(q,p). 

. 
In practice: as the system 

(6b) differs from the identity only in second order, 
it is readily solvable by a number of techniques. 
For example, the program MARYLIE [3] solves such 
systems by use of a Newton's search procedure; in 
the following example, the program DINAT employs an 
iteration technique 141 with acceleration factors 
for more rapid convergence. 

The various routines under consideration will in 
general represent only minor programing effort and 
can in fact be written in a modular fashion, so as 
to be implementable in any standard second order 
matrix optics program.. 

Symplectification of OIHAT 

Routines similar to those discussed above have 
been incorporated as FORTRAN subroutines in the pro- 
gram DINAT [5]. We now give an example of their 
application. 

Example - Combined Function FODO Lattice: A 
simple lattice of combined function, 2", 4 m long 
bending magnets (separated by 1 m long drift spaces) 
was designed. The lattice consisted of a matched 
insertion, followed by three 60" FOOO cells, fol- 
lowed by a second matched insertion, and ended by 
four more 60" FODO cells. The matched insertions 
were represented by a simple Twiss matrix and were 
included solely to adjust the tunes of the lattice. 
In the example shown below, the phase advances across 
the insertions were taken to be 79' horizontally and 
48" vertically. The chromaticities were fit to zero 
by introducing sextupole components in the bend mag- 
nets. 

Once all tunes and chromaticities were fit, a 
particle was launched in the midplane and tracked 
using a nonsymplectic ray trace. The result of the 
experiments are shown in Figures I; the growth of 
phase space (and associated violation of Liouville's 
theorem) is apparent. When the experiment was 
repeated using a symplectic ray trace of the type 
discussed above, no growth of phase space was 
observed (Figures II). 

Conclusions 

We have given evidence that a standard second 
order matrix ray trace can violate the symplectic 
condition. This problem may be effectively remedied 
by use of a simple generating function method. The 
procedure for doing so has been implemented in the 
program DIMAT. We conclude that it is possible to 
bring a second order matrix ray trace to canonical 
form. 
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Figure 1 a) Horizontal phase space for turns 1 to . Figure 11 a) Horizontal phase space for turns 1 
------- 50, nonsymplectic ray trace acting on particle 
launched in magnetic midplane. 

to 50, symplectic ray trace acting on particle 
launched in magnetic midplane. 
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Figure I bj Horizontal phase space for turns 2050 
to Z!CO, using nonsymplectic ray trace. Growth of 
phase space (in violation of Liouville's theorem) 
is apparent. 

Figure II b) Horizontal phase space for turns 
2050 to 2100, using symplectic ray trace. NO 
growth over a 2000 turn interval is apparent; 
Liouville's theorem is satisfied. 
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