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Abstract 

Uniform magnetic field perturbations cause a 
closed orbit distortion in a circular accelerator. If 
the magnetic guide field is non-linear these 
perturbations can also cause a Nu shift in the 
betatron oscillations. Such a shift in radial Nu 
values has been observed in the Bevalac while 
studying the low energy resonant extraction system. 
In the Bevalac, the radial perturbation comes from 
the quadrants being magnetically about O.B% longer 
than 90". The normal effect of this type of 
perturbation is a radial closed orbit shift and orbit 
distortion. The nu shift, associated with this type 
of perturbation in the presence of a non-linear guide 
field, is discussed in this paper. A method of 
handling the non-linear n values is discussed as well 
as the mechanism for the associated Nu shift. 
Computer calculations are compared to measurements. 

Observations From Extraction Studies 

A new resonant extraction magnet was installed at 
the Bevalac to allow more efficient extraction at 
lower energies. Because of less damping of radial 
betatron oscillations at lower energies, the new 
maqnet had a lamer radial aoerture than the original 
magnet. This caused some changes in the resonant 
extraction system.[l] The results reported here are 
part of the study to find a better model to calculate 
the extraction parameters. One of the observations 
was an apparent Nu shift (Fig. 1) from what had been 
calculated from original magnetic field data.[2] 
This magnetic field data was meager, so a check was 
made using a current in one of the pole face windings 
(PFW). These windings are a set of windings on the 
upper and lower pole tips used to make small changes 
in the n value across the gap. The field index n is 
defined in the equation 

B= BO*RO"/R" 
where n is a constant. 

(1) 

The Nu value is measured by flipping up a U 
shaped target that is centered on the beam. The rf 
accelerating voltage is turned off, the frequency 
shifted from rotational frequency to near the radial 
betatron oscillation frequency, and the rf voltage is 
then turned on again. By slowly sweeping the frequen- 
cy, the frequency at which beam loss starts is noted. 
This is the betatron oscillation frequency for that 
radial oosition and the maximum amplitude particle 
just contained within the U target.- The ratio of the 
betatron oscillation frequency to the rotational fre- 
quency measured just before the frequency is switched 
is the Nu value. These measurements are made on 
flattop where there is no energy gain necessary for 
the beam to remain at constant radial position. 

Two radial scans were made with this probe. One 
with the PFW currents on and one scan with the 
currents off. The difference between these two curves 
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gives the Nu shape for the PFW current. This also 
showed a radial shift of Nu. 
2. 

This is shown in Fig. 
The radial position of the probe was rechecked 

and shown to be correct. Until these calculations we 
had no explanation for the observed shift. 
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Fig. 1 Nu shift between calculated and 
magnetic field data. 

Equation of Motion with a Non-Linear Force 

The second order differential equation of motion 
describing radial betatron oscillations is given in 
Eq. 2. 

d(mR)/dt =mv*/R -evB (2) 

It is more convenient to transform from a time to 
azimuthal coordinate 0, using the relationship WY 
v/R =de/dt. Because the momentum is constant, we can 
substitute mv=e*RO*BO and rearrange terms to yield 
Es. 3. 

- d2R/de2=RC1- B*R/BO*RO) (3) 

Using Eq. 1 and expanding around R with R=ROtx 
yields the familiar relationship shown in Eq. 4. 

d2x/do2F -(l-n)x (4) 

If n varies as a function of R, then the magnetic 
field value B at R is no longer defined by simply 
stating the radial position and the field index n. 
The derivation of Eq. 4 from Eq. 3 taking n=n(R) 
would yield Eq. 4 with n=n(R). This is a non-linear 
equation and doesn't have the familiar sinusoidal 
solution of the linear equation. In addition, n at 

OOIS-9499/85/1ooO-2276$01.000 1985 IEEE 

© 1985 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



any radial position in the field is usually 
determined by measuring the field gradient DB over a 
radial difference DR and defining n--(dB/B)(R/dR). 
The relation n=n(R) would not define the same n value 
as that measured. lhe method of measuring Nu with 
the U target as described above, also yields magnetic 
field values as defined by the gradient definition of 
n above. 

lhe wealth of theory in the literature and the 
ease of visualizing the motion in the sinusoidal 
solution make it desirable to retain that form. I 
propose then to maintain the form of Eq. 4 but 
redefine n as an effective n that will give the 
correct value of magnetic field B at position R and 
hence the same restoring force. The field index n 
is then defined as neff = log(B/BO)/log(RO/R). Note 
that neff defined this way is no longer uniquely 
defined at a radial position but at a radial position 
relative to the closed orbit values RO and BO. This 
technique allows the handling of non-linear magnetic 
guide fields while still retaining the form of the 
linear case. However, if you change the radius of the 
closed orbit you must calculate a new set of n values. 

Field Perturbations 

The Bevalac is a weak focusing synchrotron with 
four 900 quadrants and four straight sections. The 
quadrant magnetic fields are about 0.8% longer than 
90" at about 5 to 6 KG. The normal betatron 
oscillation calculation assumes that the magnetic 
field will bend the particle through 360" in going 
once around the machine on the closed orbit. Any 
excess or shortage of guide field must then be 
handled as a radial perturbation. This results in an 
orbital offset of about 33cm in the Bevalac (radius 
of curvature = 15.24 m) and a scallop of 3.5 cm as 
shown in Fig. 3. 

Computer Model 

Combining this field perturbation with the 
non-linear n values in a computer calculation of the 
betatron oscillation yielded, among other results, a 
radial Nu shift about three times the amount 
observed. This was interesting as we had been unable 
to explain the observed shift by any other mechanism. 
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Fig. 7 Difference between Nu measurements with PFW 
current on and PFW current off. Peak is 
normally centered at radial' location of 
current. Figure shows apparent radial 
shift. The calculation in this paper shows 
a similar shift. 
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A second result was that in a number of cases the 
motion appeared unsalable. This was caused by the 
fact that in the region of the equilibrium orbit, 
33cm outside the closed orbit, the n values were 
greater than 1. The calculation for neff is about 
the reference orbit, so these values greater than 1 
effect the calculation. As the particles are never 
in that region of magnetic field.it cannot determine 
the details of motion. This difficulty was handled 
by chasing a nominal Nu value for the closed orbit 
calculation with the perturbation. A second 
calculation is then made using a simple betatron 
oscillation supperimposed on top of this distorted 
closed orbit using the neff values for the actual 
radial position of the particle relative to the 
calculated closed orbit. While this method was 
originally used to eliminate an instabilitv from the 
n>l region, physical consideration say that it must 
be handled this way as the particles are never in the 
region of the equilibrium orbit and cannot be 
effected by the n values there. This method reduces 
the radial Nu shift about a factor of three which 
agrees with the observed shift. Fig. 1. It also 
presents a rather simple physical explanation of the 
shift. The particle is really moving at a smaller 
radius than is observed in the staight section, where 
monitoring is done. It therefore has a Nu value 
associated with that smaller radial position of the 
closed orbit. 

Details 

One question that must now be examined is what is 
the error associated with using a constant nominal 
value of Nu to calculate the closed orbit. Fig. 3 
shows the trajectory through a quadrant and into the 
straight sections. If all four quadrants are the 
same, then by symmetry we can evaluate the scallop 
and offset. The scallop is given by Xl-X2 and the 
maximum displacement X0 is calculated by setting 
Xl'+DL =o. The values of XO/DL and (X1-X2)/X0 vs Nu 
are shown in Table I. The change is not large for a 
few tenths variation in Nu. Several iterations can 
be made if a more precise value is needed. This 
value of Nu is for the quadrant only (Nu-SQRT(l-n)) 
not the quadrant plus drift spaces. 
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Where: X=XO*COS(Nu*o+PI) 
X1=-Nu*XO*SIN(Nu*0tPI) 

Fig.3 Closed orbit shift and distortion from 
quadlength perturbation DL. 

Table I Variation in orbit offsets vs Nu. 
N! XO/DL 

.58 3.919 
W#N 

.60 3.671 .lQ9 .__ 

.62 3.447 .116 

.64 3.243 .124 

.66 3.058 .131 

.68 2.889 .139 

.70 2.734 .147 

.72 2.592 .156 



The next point to be considered is phase advance 
per turn. Fig. 4 shows a typical phase plot for a 
betatron motion about the equilibrium orbit using the 
radial perturbation from the extra maghetic field. 
Notice that relative to the equilibrium orbit there 
is no continuous phase advance as in a normal 
betatron oscillation only an advance and then a 
retarding of the phase along with a change in radial 
position. A continuous phase advance and typical 
betatron oscillation only exist relative to a point 
marked as the closed orbit. In the computer 
calculation, this point is taken as the average 
radial position, at that azimuth, for 100 turns about 
the machine. In the calculation for the Bevalac. 
this point was calculated at the center of each 
straight section and for each 2.5" in the quadrants. 
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Fig. 4 Phase plot about equilibrium orbit. 
Numbers indicate position of successive 
turns. 

To compare the phase advance determined by this 
method to the normally defined constant phase advance 
in the literature, we must understand what these 
quantities are. The phase advance calculated in this 
paper is the actual physical quantity. lhe constant 
phase advance from theoretical calculation5 is a 
mathematical parameter not the actual physical phase 
advance. Unfortunately, this fact is never mentioned 
in the literature and as a result some people treat 
it as the actual physical phase and get erroneous 
results when phase information is needed. The 
constant phase advance is the physical phase advance 
after j oscillations and k sectors, or turns 
depending on how the constant phase advance was 
determined, where j and k are integers. For many 
turns, the average value of the phase advance is 
equal to the constant phase advance. To compare the 
phase advance from the computer calculations to 
theory, I have taken the average value over 100 turns. 

As it is more convenient to talk about Nu values 
than phase advance, the results are presented in 
terms of Nu values. As the Nu value is just the 
ratio of phase advance divided by machine degrees, 
the same arguments as to the nature of phase advance 
apply to Nu values. Nu values, as calculated from 
theory, are average values over many turns. 

Conclusion5 ____- 

All accelerators must have some perturbation 
fields similar to the Bevalac associated with the 
fringe fields of the guide field magnets. If they 
also have some non-linearities in field shape, they 
may also experience some similar Nu shifts. In 

normal operation the orbital shifts produce a slight 
change in acceleration frequency, which is not always 
noticed as the absolute value of frequency expected 
is not always known. In the case of the Bevalac, the 
orbit change is enough to produce an energy shift of 
about 1.2%. The experimenters are now starting to 
want heavy ion energies known to better than 1%. So 
this type of effect must be included in energy 
correction calculations. 
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