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Abstract ~- 

The trajectory of a particle in an arbitrary 
guide field can be computed as accurately as desired 
by numerical integration, This "measured" trajectory 
can then be fit with the phase-amplitude relation des- 
cribing betatron oscillations, suitably generalized to 
account for nonlinear effects. Information about 
closed on- and off-momentum orbits, as well as the 
frequencies of small oscillations about them, can be 
obtained from such fits. Thus one can compute chroma- 
ticities exactly, among other things. 

1. Introduction 

Consider the very small alternating-gradient 
synchrotron shown in Fig. 1. Each 90° bend consists 
of six wedges having plane pole faces; thus the field 
in a quadrant is piecewise Cartesian rather than truly 
radial. When we add to this the additional complica- 
tions of transition fields between the F and D wedges 
and fringe fields at the ends of each quadrant, we 
have a machine which is nonlinear even for small 
oscillations of a test particle. Similar effects are 
found in large machines, whose arcs are usually ap- 
proximated by many relatively short straight magnets. 
In a small machine, where the transverse oscillation 
amplitude is more nearly comparable to the bend radius, 
such effects are more important. 

Fig, lr An inherently nonlinear guide field. Wedges 
represent gradient magnets with plane pole faces. The 
field is piecewise Cartesian rather than radial. 

One might wish to calculate, among other things, 
the distortion of the closed on-momentum orbit due to 
the non-radial character of the field; the shape of 
the closed off-momentum orbits and the chromaticity 
(frequencies of small oscillations about closed off- 
momentum orbits). Recent literature contains at least 
three distinct ways of attacking these problems, no- 
tably the chromaticity. 'Two, the methods of &ger and 
Mzhlland that of Peggs2, are second-order methods; the 
method of Dragt3 is exact. 

The method of Jzger and Mahl is basically an 
extension of the Courant tuneshift formula4 to second 

order; they express the chromaticities in terms of 
integrals around the ring of the quadruple and sextu- 
pole coefficients of the fields suitably weighted by 
the unperturbed curvature, beta and dispersion func- 
tions. The chromaticity can thus be written as the sum 
of contributions from each magnet, and its physical 
sources become clear. Their formulas are incorporated 
in the synchrotron modeling program COMFORT5. 

%!YS' method consists of finding a 'Swiss matrix 
for motion around the off-momentum orbit in terms of 
the first- and second-order transport matrices for the 
design orbit. The perturbed tunes are given by the 
trace of this matrix and can therefore be expressed 
directly in terms of the second-order matrix elements 
which in turn can be calculated by the program 
TRANSPORT. Jzyer and Mghl found good agreement between 
their method and Peqqs'. 

Dragt's method starts with a complete specifica- 
tion of the magnetic field everywhere (rather than an 
optical equivalent or a finite multi&pole expansion). 
A numerical procedure is then used to simultaneously 
integrate the equations of motion for a particle tra- 
jectory and the variational equations for neighboring 
trajectories. A rapidly convergent Newton's search 
procedure is used to find closed orbits (which may be 
on- or off-momentum) and the solution to the variatio- 
nal equations provides the tunes of these orbits. 

Functionally, the method we now describe resem- 
bles Dragt's: it starts with a complete field map and 
yields closed orbits and tunes. It too is exact, that 
is, limited by computational effort rather than any 
particular degree of approximation. Otherwise, it is 
completely different, Suppose that, starting with a 
complete field map, one has obtained by some means in- 
dependent of synchrotron theory (e.g. numerical inte- 
gration) a picture of the betatron oscillation of some 
test particle, An example is trace 1 of Fig. 2: a small 
oscillation about a distorted closed orbit highly dis- 
placed because of the 2% momentum defect. Even from a 
casual inspection of this picture we can say something 
about the tune: it is approximately 1. (The picture 
represents a full circuit of the machine.) If we had 
an equation whose parameters could be adjusted to fit 
the trace accurately, such a fit would give us accu- 
rate information about the tune. For instance, if we 
had picked conditions leading to something more nearly 
sinusoidal, we could certainly estimate the tune by 
fitting a sine function with arbitrary displacement, 
amplitude, frequency and phase. 

Looking at Fig, 2 it is clear that, in the actual 
case, the fitting function must be much more compli- 
cated if we are to obtain a good fit, In fact, what it 
must be is precisely a generalization to the nonlinear 
case of the phase-amplitude relation familiar from 
beta theory! We have found such a trial function by 
guesswork, using the linear case as a model. To that 
extent our procedure is semi-empirical. Nevertheless 
the formula does yield excellent fits for small oscil- 

lations, and there is little reason to doubt the 
closed orbits and tunes we obtain, as we shall try to 
show, 

2. Linear Case 

In the linear approximation with median-plane 
symmetry the displacement x of the particle from the 
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Fig. 2: Some results for a particle with momentum 
defect = .02 , 1) Small oscillations about displaced 
equilibrium orbit, output of numerical integration, 
2) Error of linear equation (1). 3) Facsimile of 
error of fit equation (7). 4) h term of eqn. (7), 
analogous to dispersion function of linear theory, 
Numbers at right: peak value of each trace, 

equilibrium orbit in the bend plane is given by 

x(s) = A w(s) cos ('+'Y(s) + B) + 6.q(s) (1) 

s is the circumferential coordinate. A, B and 6 are 
constants which depend on the initial conditions; in 
particular the momentum defect 

s =(P-Po)/Fc (2) 

is constant because we ignore acceleration. If the 
machine consists of N periods each of circumferential 
length L then the lattice functions w and q are 
periodic in s with period L; w is the square root of 
the familiar beta fun&ion whileqis the dispersion 
function, Given the focusing function, w and q can be 
found by well-known methods.? itself is not periodic; 
it is a monotonically increasing function of s with 
undulations, but its derivative is periodic and in 
fact, closed tied to the beta function: 

4+/+ = 1 = 1 
(j(s) iJ-- (3) 

We can always choose the origin of s to be at an 
extremum of the lattice functions so that their deri- 
vatives vanish there; doing this, and also assuming 
the test particle starts there we can obtain simple 
expressions for A and B in terms of the initial 
conditions and lattice functions: 

A = ( x0* + 1 xo'/y/o'l 2 1% /"o (4) 

5 = - tan-l (( .xo'/~o'l/ q I (5) 

The tune Q of the orbit is the number of oscil- 
lations per circuit of the machine; if C = N L is the 
circumference of the ring then 

*nQ = "I, cs+c1 - y'(s) = Y(C) (6) 

Similar considerations apply to the vertical displace- 
ment except that the dispersion function vanishes, The 
gist of this review is that, if the starting position 
and slope of a particle are hewn, its trajectory is 
predicted by the linear theory. Little use is normally 
made of this fact, as we are not usually interested 
in the paths of individual particles. 

3. Nonlinear Case 

Here it is useful to think of three orbits. The 
layout orbit is simply a reference line around the 
machine; a convenient definition is the path resulting 
when all fringe fields are ignored and all multiples 

past the dipole are turned off. It consists of line 
segments and arcs of circles, and no particle follows 
it exactly. The equilibrium orbit is the actual closed 
path of a non-oscillating particle, and depends on its 
momentum defect. Finally we have +-he actual orbits of 
particles in the machine, which consist of small or 
large betatron oscillations about equilibrium orbits. 
Let us assume that there exist pricdic functions u, 

4 - '*and h of s such that the displacement x from the 
layout orbit is given by 

~(6;s) = C ~(6;s) cos(~#)d;s) + D) + h(6;s) (7) 

There is a strong analogy to (1) but three impor- 
tant differences: a) The lattice functions depend im- 
plicitly on 6 as indicated; b) We do not assume h(O;s) 

= 0; in fact h(O;s) is the equilibrium on-momentum 
orbit with respect to the layout orbit; c) No relation 
such as (3) is assumed a priori between 6' and u, 
since (3) was just a consequence of the linear approx- 
imation rather than the deeper assumption of the perio- 
dicity of the machine. 

Now assume we have found by numerical integration 
an actual trajectory corresming to some reasonable 
initial position, slope and momentum defect. Consider 
how we might fit this "measured" trajectory with (7) 
and what we might learn from such a fit, Clearly we 
would immediately have found the corresponding equi- 
librium orbit h(s); we will soon show that we will 
also know the tune, and we may be able to learn other 
things, such as a generalized beta function. To begin, 
reasoning as in the linear case we find 

c = ((x0- hoI2 + (~V~,'12)~ / uo (81 

D = - tan-1 ((x,'/$~')/(x, - hoI) (9) 

But these equations contain the general lattice func- 
tions, which are not yet known. This involves us in 
a circular process. So let us rewrite (7) 

x(s) = f(s) COS#J(S) + q(s) sinb(s) + h(s) (101 

absorbing the constants C and D in the new periodic 
functions f and q. Let us &pose periodicity on f, g, 
h and 4' by writing them as Fourier series e.g. 

h4 
f(s) = f, + f fj WS (2Tj S / L) (11) 

,.-I 
with similar expressions for g and h and 

Q'(s) = PO ill J + ?p. cos (2Vj s /L) (12) 

Cosine series suffice because of our choice of origin 
for s. Now fit (10) to the measured trajectory; the 
forty or so Fourier coefficients are the adjustable 
parameters of the fit, (10) is linear in thirty of 
them, which simplifies matters somewhat, Now the 
coefficients are known, Integrating (12) gives 

b(s) = Pas + T Y$$ Pj sin (2cTj 5 /L) (13) 
j-1 

and therefore 

4(C) g=zn= w = N,“,” = bR (14) 

where R is the gross radius. We have found the tune 
in the nonlinear case. 
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lines show the chromaticities obtained by running 
COMFORT on the same lattice, as was kindly done for us 
by J. Jiqer. We have not tried hard t? understand the 
small discrepancies (12% in pn and 4% in Qv); they 
could be the difference between a second-order cslcu- 
lation and an exact one. The result for Q, inciden- 
tally illustrates Dragt's comment3 that the "natural" 
chromaticity of a small ring can well be positive, 

One would like to go farther and find the non- 
linear generalization u of the function w. However we 
find, upon doing the algebra, that the fit has only 
determined the product C.u of (7). In other words (7) 
alone does not unambiguously define an amplitude func- 
tion; some subsidiary condition is needed. This 
question is left to ponder. 

4. Computational D'etails and Results 

We have written a program to implement these 
ideas, After accepting parameters defining a machine 
and a test particle, it performs a conventional 3 x 3 
transport matrix analysis to determine the linear 
lattice functions; these will be used as a starting 
pint for the nonlinear fit. By means of the Runqe- 
Kutta algorithm the test particle is then tracked 
around the ring [we need to follow it for approxi- 
mately one betatron period). The trajectory thus found 
is fit as follows: 3 starting set off$' coefficients 
is found by means of a linear-least-squares fit to the 
+' function (3) found in the linear analysis. These 
are then improved, starting with po, by a step-search 
using as a figure-of-merit the logarithm of the fit 
residual normalized to the rms deviation of the tra- 

.jectory from its mean. Near a good fit this quantity 
is parabolic in each pj which is used to speed up the 
fit. After each change of a pj the thirty remaining 
coefficients are recomputed by linear least-squares 
(matrix inversion), Only one pass through the pj is 
needed. The entire process, in both x and y, takes 
about 7 minutes CPU time on a VAX 11/780; this is 
strongly dominated by the fit search. One can stop 
with po and get the correct tune, but the fit will be 
p0r. 

We have obtained many results for a machine cf 
the type shown in Fig. 1. Fig. 2 is typical: it shows 
1) the trajectory of a slightly oscillating 2% off- 
momentum particle; 2) the fit error for the linear 
form (1) (about 9%); 3) the fit error for the non- 
linear form (7) (about .05%) and 4) the closed orbit 
h(.02;s). The actual trajectory and the linear predic- 
tion would be easily distinguishable in a side-by-side 
commrison; the actual trajectory and the non-linear 
fit would be completely indistinguishable. The charac- 
ter of the fit error, rapidly oscillating about a 
fairly flat baseline, shows it is dominated by the 
finite number of Fourier coefficients used (10 here 
for each of the four functions). 
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Fig. 3: Horizontal and vertical tunes vs. momentum 
defect, with and without sextuple chromaticity com- 
pensation. Dashed lines: results from COMFORT. 
Arrows: tunes from linear matrix analysis of lattice. 

6 
Fig. 3 shows the dependence of x and y tunes on 

, obtained from a series of runs. It also shows that 
the chromaticity can be eliminated if desired by add- 
ing suitable sextuple coefficients to the gradient 
magnets. The arrows show that the tunes obtained from 
the standard matrix analysis of the lattice agree 
well with those from the nonlinear fit. Tne dashed 

5. Conclusion 
. 

This note was intended more to suqqest a new way 
to approach nonlinear effects rather than as a finish- 
ed product. It is probably useful only for small os- 
cillations; for large ones the fits, though still far 
better than the linear prediction, are poor. In fact 
since it is well known that for large oscillations 
("far-from-linear" region) the whole concept of a 
constant tune breaks down, and must be replaced by a 
whole spectrum of characteristic frequencies, one 
would not expect anything as simple as (7) to work 
well. Still, we have here at least a competitive way 
of finding chromaticities in an arbitrary guide 
field, and possibly an approach which will give new 
insights into nonlinear behavior. 
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