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RESONANCE CROSSING IN THE PRESENCE OF SPACE CHARGE 

Ingo Hofmann and K. Beckert 
GSI Darmstadt, P.O.B. 110541, 6100 Darmstadt, Uest-Germany 

In circular accelerators the tune of a particle may 
cross a resonance line due to space charge. A 
self-consistent treatment requires taking into account 
the time-dependent space charge force in addition to 
the driving field errors. This is investigated by means 
of computer simulation for linear and non-linear reso- 
nances. The new features as compared with resonance 
crossing in the absence of space charge are discussed. 
In the case of a dipole resonance space charge is found 
to have a stabilizing effect, whereas it can lead to 
undesirable tune locking for non-linear resonances. 

1. Introduction 

The stability of orbits in circular accelerators has 
been studied extensively under the assumption of no 
space charge effects. The importance of space charge 
for crossing of linear or nonlinear resonances is evi- 
dent in synchrotrons or storage rings with high beam 
intensity and low energy due to the decrease of space 
charge effects as l/T'. Space charge modifies resonance 
crossing in severalways: both the single particle tune 
and the tune of coherent oscillations are shifted by 
space charge; a nonlinear space charge force has a 
dynamical effect on the development of nonlinear reso- 
nances, which can be stabilizing due to detuning of 
betatron frequencies. This has been shown by analytical 
work assuming a stationary distribution of space charge 

during resonance crossingl. This approach is thus lim- 
ited to the onset of resonance. The question can be 
raised, how the resonance crossing is affected beyond 
the early behaviour by giving up the constraint of a 
stationary distribution of space charge, i.e. making 
the problem self-consistent. We have studied this by 
means of computer simulation with the particle-in-cell 
code SCOP-2. This approach is strictly self-consistent, 
but on the expense of relatively large computer time due 
to the direct orbit integration of some 10' particles. 
We are thus limited in the simulation to a few thousands 
of revolutions, hence consider relatively large per- 
turbing terms in the percent range to enhance the effect 
of resonance crossing. Such perturbations can be 
expected from beam beam interaction rather than magnet- 
ic field errors, which are usually much smaller. 

In section 2 we describe the features of the numerical 
procedure. In section 3 we present results for integer 
resonance crossing with a dipole error. The difference 
between self-consistent and non self-consistent treat- 
ment is most obvious here, since we observe that cross- 
ing of the (space charge shifted) tune over the integer 
has no effect on the beam. In section 4 we treat an 
octupole perturbation as example of a nonlinear reso- 
nance. 

2. Numerical Method 

For simplicity we consider a ring with constant focus- 
ing providing a tune v o x z (in the absence of space 

, * 
charge) and a magnetic field perturbation of harmonic 
m. Throughout these calculations a coasting beam with 
no momentum spread is assumed. Space charge gives rise 
to an electric field Ex z, which is calculated 

self-consistently from the actual density distribution 
by solving Poisson's equation every time step. Ex z 

thus gives rise to an incoherent tune shift AUK z (d:e 

to the linear part of Ex s), a spread in tunes due to 

the nonlinear part of Ex i and a time-dependent coher- 

ent force as a result of beam excitation during reso- 
nance crossing. The latter is an essential part of our 
work, since it makes the problem dynamically 
self-consistent. We thus trace particles according to 

(I) X" fv,'xx - q/(MY"v')Ex(x,z,O)=Eh~-~,x~x,=~sin mu 

(similar in z), where 0 is the angle around the machine, 
h a polynomial of order p - 1 (p = 1 dipole; p = 2 qua- 
drupole etc.) to describe a resonance term of order p - 
1 and single harmonic m. c gives the strength of the 
resonance term. We have traced 8 x 10' particles to 
obtain a good resolution for space charge calculation 
and assumed a spatially uniform distribution at start. 

3. Dipole Resonance (p = 1) 

Here we assume h z 1 in x-direction and m = 2. In the 0 
absence of space charge the equilibrium orbit is dis- 

placed by2 (E = R' GB,/BU) 

(2) 6x = e/c"* 
0 -m2) sin& 

whereas crossing of the resonance at v 
0 

= m yields 

(3) 6x = I/2 E/In (Tr/a) l/2 

with a = duo/d0 the speed of crossing. 

This obvious result is confirmed by the simulation 
shown in Fig. la, where v o is slowly shifted from 2.1 to 

1.9 at constant speed (m = 2). As a next step we assumed 
v 0 = 2.4 and raised the current such that the space 

charge depressed tune v is shifted from 2.4 to 1.6 at 
the same rate (Fig. lb). No displacement of the beam is 
found during this integer crossing of v. This is 
explained by the fact that v applies to the single par- 
ticle oscillation within the stationary beam, whereas 
the coherent dipole oscillation is only affected by vo, 

which is far above the integer. 

The obvious conclusion is that in a synchrotron dipole 
errors are not of concern, if v crosses an integer as a 
result of high space charge at the bunch center. This 
also removes the concerns about integer crossing that 
were expressed in the context of fast bunch compression 

in heavy ion fusion storage rings 3,4 Basically the 
same result was found for a (transversely) parabolic 
initial density distribution. The effect of a spread in 
v due to finite 5p/p has not been explored numerically; 
theoretical work gives evidence for a small residual 

effect5'6. 

lb) 

Fig. 1: Phase space projections for dipole error before 
and after integer crossing. (a) crossing of vo; 

(b) crossing of v (vo fixed). 
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i. Nonlinear Resonance (p = 4) 

We assume an octupole term with h3 x = x3 - 3x z2, 

h 3 
3,z = = - 32 x2 and harmonic m = 9. A resonance is 

expected for u = 2.25, in the absence of space 
0 x,2 

charge. There is a stopband width 6v depending on E'. 
We consider perturbations large enough to cause signif- 
icant emittance dilution for v. inside the stopband 

-2 (E = 10 . ..lO -1 for an initial beam radius i>f 1 cm). 

Crossing of the resonance at a rate du/dO = 3.10 -5 (the 
tune changing from 2.3 to 2.2 during 500 revolutions) 
leading to beam loss on the aperture (at 2 2.5 cm) is 
shown in Figures 2 and 3a, with E = 0.1 and a stopband 

-2 width of 6y ^ 5 10 . As a measure for the effect of 

resonance we use in Fig. 2 the fraction of intensity 
contained within the original beam cross section. 

As a next step we allow for uniform space charge, which 
results in a shifted linear tune v= Y - Au. With reso- 

0 

nance crossing we observe the following new phenomena: 

(b) 
re” 105 

Revolutions 

Fig. 2: 4-th order resonance crossing showing intensity 
within original beam cross section 
(a) no space charge 
(b) fixed current, v increasing 

(c) fixed current, vz decreasing 

(d) fixed v o, current increasing 

c 4 -: .‘. I!0 8’0 .r 0 0 2.4 
x 

32C 

125 

: : 

I x L x x 

(cl 
re” 50 150 250 150 

0 
. 
D 
I :. '_ 

2: ?i!m!ild 

.,.. .' 
a 
7 

: 
-,.a -1.0 DO I.0 2.D 

x 1 

(dl rev 50 150 250 150 

: : 

x x x 

Fig. 3: Phase space projections for examples of Fig. 2 
shown at different steps of revolutions. 
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A. Coherent Shift of Resonance 

We choose v 
0 

= 2.5 (fixed) and allow for a linear 

decrease of the single particle tune v by increasing the 
current. For Y crossing 2.25 we see no effect, but only 
for v below 2.24. Hence, the upper edge of the stopband 
has been shifted to v = 2.24. This is explained by the 
fact - in analogy with the dipole mode - that it is the 
coherent frequency vcoh, of multipole oscillations (de- 

termined by h3), which must satisfy the resonance con- 

dition 4 vcoh = 9. The difference vcoh - u is 

proportional to Av; for the mode considered here it is 
about 10 % of Av (see Fig. 4). 

B. Tune Locking at Resonance Crossing 

In the next examples we choose Au = 0.05 and cross the 
resonance by shifting v 

0 
upwards or downwards, which 

gives a substantially different behaviour (in contrast 

with the crossing neglecting space charge, where there 
is no difference). 

We first cross the resonance from below by shifting v 
0 

from 2.25 to 2.35, hence Y approaches the stopband from 
below. The actual crossing shown in Fig. 2 and 3b is 
faster than in the spacechargeless case and consider- 
ably less harmful. We explain this by the observation 
that onset of some emittance growth pushes v further 
upwards and thus resonance crossing is accelerated. For 
this to be effective it is important that 

(4) Av >> bv, 

hence a relatively small increase of the emittance 
shifts v above the narrow stopband 6v, which suppresses 
further growth. 

In the reverse case we shift v. from 2.3 to 2.2 and thus 

allow Y to enter the stopband from above as shown in 
Fig. 2 and 3c. A small increase of emittance pushes v 
upwards again. We have evaluated the actual v 
(averaged) and find it is locked to the value at onset 
of resonance. As a consequence, all beam is lost as soon 
as v o approaches 2.25. This locking of v to the stopband 

is observed, if the working point v. changes at a suffi- 

ciently slow rate determined by the parameter e and the 
ratio 6v/Av. 

Finally, we have also examined the case, where v o is 

fixed (= 2.3) and v is slowly depressed by increasing 
parametrically the charge carried per simulation parti- 
cle to simulate the effect of slow bunching or - by 
analogy - of beam cooling (Fig. 2 and 3d). Again Y is 
iocked to the stopband. The particle density decreases 
to the effect that the actual charge density remains 
constant, hence also Au. In both cases the stopband 
(displaced by the coherent frequency shift) acts as a 
real barrier if approached from above (see Fig. 4). 
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Fig. 4: Behaviour of Y (rms averaged) locked to stop- 
band for v. fixed and increasing current. 

Conclusion 

We have investigated self-consistent space charge 
effects for resonance crossing. Relatively strong per- 
turbations, which would have a serious effect in the 
absence of space charge, have been considered. The 
observed tune locking at the stopband may be important 
for beam-beam nonlinear resonances in the presence of 
phase space cooling. It has to be examined in future 
work with much smaller perturbations, when the loss 
mechanism is dominated by trapping on outwards moving 

island structures. It is expected1 that these struc- 
tures are affected by nonlinear space charge. The code 
used here is probably not suitable for a large number of 
revolutions in view of the large CPU time it requires. 
It will be necessary also to ensure to what degree the 
code deviates from a strictly symplectic 
transformation, due to the errors involved in the orbit 
integration and space charge calculation. 
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