
4 

lEEE Trana&Xions on Nuclear Science. Vol. NS-32, No. 5, October 1985 

WIDTH OF NONLINEAR DIFFERENCE RESONANCES 

S. Ohnuma 

Fermi National Accelerator Laboratory* 
P.O. Box 500, Batavia, Illinois 60510 

and 

R. L. Gluckstern 

Department of Physics and Aitronomy, University of Maryland 
College Park, Maryland 20742 

236 I 

SUMMARY 

We consider an isolated difference resonanceofthe 
form (2p)vl - (2q)v2 = n + E where (2~) and (2q) are 
positive integers with (2p)+(Zq)>2, n is 0 or an inte- 
ger and ,c/<<l. With action-angle variables (Ik, ak), 
the Criving term of this resonance in the Hamiltonian 
takes the form D.(2Il)P(212)q cos(9), @ =(2p)al-(h)a2 
+const. Unlike sum resonances, two action variables 11 
and 12, which are proportional to emittances in two di- 
rections, are bounded and any definition of resonance 
widrh will involve the concept of an "acceptable" growth 
in 11 or 12. We propose a definition such that inside 
the resonance.width, an initial condition of large 12 
and very small 11 will lead to an order of magnitude 
growth in Il. With this definition, the width isindef- 
inite for (2p)=l. An arbitrarily small 11 can grow to 
a sizable fraction of (p/q)12 for any value of 1~1. For 
(Lp)=Z, the width is proportIona to D.(12)q. One can- 
not have resonances for (2p)>2 according to thisdefini- 
tion, but there is a threshold value of initial Ilabove 
which 11 will grow by a large factor if 1~1 and the in- 
variant cu3ntity Il+(p/q)12 satisfy a certain relation 
which will be given analytically. We thusproposea def- 
inition involving one parameter for (2p)=2 and two for 
(2P)>2. The picture is clearly symmetric in two direc- 
tions: if the initial I2 is very small and I1 large, 
one simply uses (2q) in place of (2~) to classify the 
resonances. 

INTRODUCTION 

It is well-known' that an isolated differencereso- 
nance of the form (2p)vl - (2q)'d2 = n does not lead to 
an instability. The motion is always bounded in both 
directions and, if nC1 and 7~E2 are emittancesintwo di- 
rections, thequantity El/(2p)+E2/(2q) remains unchanged. 
("Emittance" is commonly used to describe a beam as a 
whole. In this note, we consider each particle to have 
its own emittance.) This invariant quantity is a mani- 
festation of the exchange of energy from onetothe oth- 
er direction which is familiar in the linear coupling, 
(2?)=(2q)=l. Because of this bounded nature of the mo- 
tion, one cannot avoid certain arbitrarinessinthedef- 
inition of resonance width. The purposeofthis note is 
to propose one definition in whichtheconceptofan "ac- 
ceptable" growth in the emittance plays the essential 
role. The definition will clarify, for example, the 
physical maeaning of an "infinite" width which results 
from the Guignard's expression2 when (2p)or (2q)isuni- 
ty and El or E2 approaches zero. The concept of an ac- 
ceptable growth is introduced here primarily because of 
its practical importance. Although themotionisbound- 
ed, an initially very small emittance in one direction, 
say E 1 , may grow to a large value if (p/q)*E2 is ini- 
tially very large. For example, in many accelerators, 
one tries to avoid a growth in the vertical emittance 
caused by difference resonances when the horizontal 
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emittance happens to be large. Unlike Guignard's def- 
inition, widths defined here cannot be expressed analyt- 
ically for all combinations of p and q but it is easy 
to evaluate them numerically once the definition is 
clearly understood. A numerical table will be given 
for some combinations of p and q which are likely to be 
of practical interest. 

As common in this type of treatment of nonlinear 
resonances, two approximations are made, one essential 
and the other not so but nevertheless needed to keep 
analytical expressions manageable: 
1) Only one resonance is considered at a time so that 
the treatment is best suited when the tunes are close 
to one particular resonance only. To improve this ap- 
proximation, one must go to the next order in D which 
involves a canonical transformation of the action-angle 
variables. 2) In the action-angle formalism, the 
Hamiltonian can have terms which are independent of the 
angle variables. The tune is then a function of the 
emittances. In deriving the resonance width analyti- 
cally, one ignores such terms for the sake of simplici- 
ty- It is however straightforward to include therr. for 
evaluating the width numerically and the invariant ex- 
pression Il+(p/q)12 is unaffected by their 
As has been discussed extensively by Montague E; 

resence. 
for (2~) 

=(2q)=2, phase-independent terms play a significantrdle 
when one considers the nonlinear beam-beam interactions 
in storage rings. 

ACTION-ANGLE FORMALISM 
AND TWO INVARIANT'S4 

For a nonlinear difference resonance of the form 
(2p)‘Jl - (2q)V2 = n + F., (Zp)& (2q)=positive integers, 
n =0 or an integer and i~l<<l, the resonance-driving 
term in the Hamiltonian in terms of action-angle vari- 
ables (Ik, ak; k=1,2) is 

D.(211)p(212)q cos('$) (1) 

with 0+(2p)al - (2q)a2 + const. The parameter D is 
a function of the multipole field 

‘N-1 
Z (l/B~)aN;lBy/~xN-ll _ _ ; NE(2p)+(2q) 

x-y-o 
(2) 

and the standard linear machine parameters (ek, $k; k 
=1,2): 

Di 
1 

(2Tr)2N-1 (2P) !(2q)! 
/J‘d1 (B;i$) csel X 

x .i(2p i, - 2q $, - E@) (3) 

in which the integral is for the entire ring. The in- 
dependent variable 4 is related to the central path 
length e, 0 = ?,/(average machine radius). Action vari- 
able Ik is essentially the emittance nEk of a particle, 
TirEk = "i?(2$). It is convenient to define twodimension- 
less quantities u2 and v2 which are proportional to 
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(2.11) and (212)' respectively, 

2 u = u"(zD//E/)l's W1), 

2 
v = e"(zD/lEI)l's W2), 

u " 
= (2p)q1's(2q)q's, 

a 
" 

= (2p)P'S(2q)P"S 

where p'=l-p, q'=l-q and s = p+q-1 

(4) 

(5) 

(6) 

(7) 

Note that the 
quantity D defined by Eq.(3) has the dimension of 
(length)-s. The invariance of El/(2p) + E2/(2q) is 
equivalent to the invariance of 

u2 f u2 + v2 . (8) 

Since the Hamiltonian itself is invariant (independent 
of the variable 3). one can derive other invariant ex- 
pressions from linear combinations of the Hamiltonian 
and 02. As the second invariant quantity, we choose 

h s "2 + u2pv2q w (9) 

with w : (E//E )*cos($). 
1 

For physically meaningful 
motions, both u and v2 must be non-negative and w must 
lie between -1 and +l. In the previous report4 which 
dealt with sum reonances, w was plotted as a function 
of u2 for a fixed value of o2 different values of X 
giving different curves in (u 2 ,w) space. Here, as we 
are interested in the growth in u 2 (which isproportion- 
al to 211) when its initial value is very small, it is 
more convenient to see u vs a, again for a fixed ~2. 
Different curves in (x,u2) space correspond to differ- 
ent values of w, the simplest being a straight line u2 
= A for w=O. For our purpose, it is sufficient to study 
two limiting curves, one for w=+l and the other for w= 
-1. Typical behaviors are illustrated in Figs.(A)-(D). 

RESONANCE WIDTH 

1. jt2p)-1/ 

According to Guignard,the width is 

Ae : 21~1 = 2D*(E2)q/~E1 (10) 

for El<<E2 andthisgrows indefinitely as El approaches 
zero. The behavior in (h,u2) space shown in Fig.(A) is 
valid for any value of 1~1 and the physical meaning of 
an indefinitely growing width is clear from this. An 
arbitrarilv small u2(i.e , El) can grow to a sizable 
fraction of the maximum PAssible value, a2cv2(initial). 
For v2(initial)<<l, the emittance El can increase to 
values at least as large as 

(~D/IE~)~(E~)I~~~,..~~ (11) 

For v2(initial)=2, El can become as Large as one-half 
of the mzximum possible value (p/q)E2(initial) for any 
q, i.e., if 02=2, then u2=1 for X=0 and w=-1. 

2. /2p=l 

The physical interpretation of our definition is 
straightforward for resonances of this type. When the 
initial value of E2 is sufficiently small, a small El 
stays proportionately small as illustrated in Fig.(B). 
Beyond a certain threshold value, the behavior changes 
into the one of Fig.(A) so that an initially very small 
El can grow to a large value as for the previous case, 
(2p)=l. The threshold condition 

.2q = 1 (12) 

can be written in the form 

J;:-, (C) f” (O) 

%dEz;;,, ~~~:=~~,r2 
-.I 0 .2 

For (2p)=l, (A) is applicable under any condition. For 
(2p)=2, the picture changes from (B) to (A) as one 
moves from outside to inside the resonance width. F0.T 

(2P1>2, the change is from iB) to (D) to (Cl as IE/ de- 
creases or the initial emittance Elt(p/q)E2 increases. 

Ike / = 41). (E2);nitial 

showing the relation between the resonance width 
and the initial emittance. In deriving Eq.(13) f?? 
Eq.(12), it is assumed that the initial value of El is 
much smaller than E2(initial) so that z2 -(u2+v2)init. 
= v2(initial). This is justified since we are inter- 
ested in the possible growth of El startin 
small value. For a given E2(initialj, if 
than 1~~1 (inside the resonance), the emittance El can 
grow at least to the value 

+ (E21initialx (1 - IE/#~) (14) 

corresponding to u2 2 =CJ - 1 for X=0 and w=-1. This 
quantity approaches the maximum possible value (p/q)E2 
as E approaches zero. Comparing our definition, Eq.(13), 
with the expression given by Guignard, we find that our 
width is exactly twice as large. The fact that this 
ratio two is equal to (2~) is not accidental. As one 
can see in ref. 4, theargumentbased ontheconcept of 
"fixed lines" in (Ik.aR) space leads to a factor (2~)~ 
in the expression of width. Indeed, this factor w 
pears in Guignard's formula for the width of sum reso- 
nances (ref. 2, ~~76) but the corresponding factor is 
(2~) in his definition of difference resonance width. 

3. \(2P) > 2J 

Complex featuresoftheresonancebelonging to this 
class are shown in Figs.(B)-(D). One notices that in 
all these pictures, if the initia;. value of u2 is suf- 
ficiently small, it remains small in a proportionate 
manner. In this sense, there is no'resonance according 
to our definition. However, in Fig.(C), there is a 
threshold value of initial u2 above which u2 will grow 
by a large factor as in Fig.(A). Fig.(D) shows the 
situation when the character of the coupled motion 
changes qualitatively from that in (B) to the one in 
CC). One may thus modify the strict definition which 
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was used for (2p)=l and 2, and derive the relation be- 
tween 1~1 and the invariant emittance El + (p/q)Ez in 
Fig.(D). 

Y 
Inorderto find the inflection point uo * in Fig.(D) 

and the corresponding value of U2, one must solve the 
following three equations simultaneously, 

dX/d(u2) = 0, d2X/d(u2)* = 0, w = -1 (15) 

where A is given by Eq. (9). Thealgebrais elementary 
but rather messy. The solution is 

(@ = /s/(pq) (u~/cl~)p'("~/o~)q'; p'=l-p (16) 
q'=l-q 

with 

(u)$ = - P'/(S + Jsqlp), 

(v~/o~) = - q'/(s - Jsplq ) for q # 1, 

= */(l+P) for q = 1 

(17) 

(18) 

One sees that u: + ",2 = CT: as it should be. In order 
to find the resonance width IE,~ which corresponds to 
Fig. (D) , one evaluates aozS from Eqs.(16)-(18) and 
use the relation 

1 Ed 1 = (a:/+ (*D) (ET)' (19) 

where the invariant emittance ET = El + (p/q)E2 should 
be very close to (p/q)(E2)init. As the thresholdvalue 
of u2 above which it can grow by a large factor, one is 
tempted to use the analytic expression Eq.(17), hut this 
will be an overestimate. Rather, it should be u* lying 
on the curve 
of X with uz 

w=+l (call it u$) sharing the same value 
on the curve w=-1. It will be the solu- 

tion of 

uf + u+ *q - +q = u; - utpvzq . (20) 

The corresponding value for El, (El)thr , is 

(El)thr = (u~/+ET (21) 

with the same ET as in Eq.(19). Unfortunately. it is 
not possible to express u$ analytically; Tablellists 
numerical values of (u$o$) as well as of ($/o:'), the 
factor appearing in Eq.(19), for low-order resonances. 

Eqs.(l9) and (21) together with numerical values 
listed in Table 1 specify the threshold condition com- 
pletely. A natural question to follow is: what is the 
relation between E and (El) thr 

.T CT* 
when one is inside the 

resonance, i.e., 1 is larger than ~2 ? This is the 
case illustrated in Fig.(C). The point corresponding 
to ",2 of Fig.(D) now satisfies only two conditions, 

dX/d(u*) = 0, w=-1. (15 ' 1 

Once this point is found, one evaluates the correspond- 
ing value of A and, to find (El)thr , u$ must be found 
from 

2 
u+ + u:p(u* - uf)" = A (20’) 

Table 1. Numerical Factors in Eqs. (19) & (21) 

(2P) (2q) (irp~s) b2/02) + 0 

3 1 1.02 .049 
2 .89 .029 
3 1.13 .021 
4 1.76 .016 

4 1 1.07 .14 
2 .67 .089 
3 .63 .067 
4 .77 .054 

5 1 1.16 .22 
2 .56 .16 
3 .43 .12 
4 .42 .099 

Clearly it is not possible to have analytical solutions 
for general combinations of p and q but the numerical 
evaluation is not difficult. We will simply mention 
two qualitative features: 

1) If u2 is close to ~2, the change in ut is shown 
to have an approximate dependence 

A(+*) = - JA(02) (22) 

2) For o* not too close to C?, the relation 

(El);;: *(ET - El)q = const. (23) 

seems to be valid for a large range of 2/u* 0' 
This relation is suggested by the concept of "fixed 
lines" in (Ik, ak) space4 and is used by Guignard 
also. 

Finally, it may be natural to consider the distri- 
bution of particles as a function20f two invariants, A 
and ,*, instead of more common p , "23. If the initial 
distribution is given as f(u*,v )du2dv (assuming no 
phase dependence), one can derive the correspondingdis- 
tribution F(h,u*)dhdU*. However, in view of the sim- 
plifying approximations made, this may not be too use- 
ful in praktical situations. 
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