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Abstract 

The relevance of chaotic behaviour to the HERA 
proton ring is studied. Special emphasis is placed on 
finding and investigating stochastic trajectories in 
phase space. The concept of characteristic Lyapunov 
exponents is applied to various model systems such as 
two- and four-dimensional maps 

Introduction and formulation of the problem 

The Hamiltonian describing the transverse particle 
motion in a storage ring is given by: 

P2 2 P2 
H = + + Kx(s) % + 5 + KZ(s) 5 + ): anm(s)xnzm (1) 

n,m 

with 
x,z . . . . transverse displacements of the particle 

with respect to a fixed reference orbit 
Px’Pz . . . conjugate momenta 

Kx,KZ 0.. focusing strengths in the horizontal and 
vertical plane 

anm(s) . . multipole expansion coefficients of the 
applied fields 

s . . . . . . . arclength along the reference trajectory 

The nonlinearities are characterized by the coeffi- 
cients a (s) and they are either introduced artifi- 
cially e!& by sextupoles which compensate the natural 
chromaticity or they occur naturally as deviations 
from linear fields due to errors. If, as in the HERA 
proton ring, superconducting magnets are used then 
these field errors are the dominant contribution to 
the nonlinearity. 

The equations ofmotion derived from (1) are highly 
nonlinear and in general constitute a non-integrable 
system. The general theory of these systems /l/ pre- 
dicts regular KAM trajectories and chaotic trajecto- 
ries in phase space characterized by an extremely 
sensitive dependence on initial conditions. A quanti- 
tative measure of stochasticity (chaos) is given by 
the characteristic Lyapunov exponent. Roughly speaking, 
this exponent describes how the distance between two 
adjacent points in phase space evolves with time. The 
formal definition is 

x = lim + In #$+I 

t -+- 
d(o)-+o 

with d(t) phase space distance at time t 
d(o) initial phase space distance. 

Regular trajectories show a linear increase of d(t) 
whereas stochastic trajectories separate 
exponentially. 

In order to investigate the influence of nonlinear 
fields quantitatively, the fast computer code RACETRACK 
has been developed /2/, which allows one to take into 
account nonlinearities up to 20-poles in the thin lens 
approximation. In this approximation the solution to 
HamIlton's equations of motion is given in form of 
nonlinear four-dimensional maps. 
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One way to use tracking codes is to look at the 
maximum stable initial amplitude of a particle in 
phase space i.e. we look at those trajectories which 
have the maximum initial amplitude for which the 
particle motion remains bounded or finite up to the 
number of revolutions which it is practical to track. 
These maximum amplitudes define the four-dimensional 
dynamical aperture. 

In the following sections we present numerical 
results using RACETRACK with special emphasis on find- 
ing and investigating chaotic trajectories in phase 
space. 

The calculations have been performed on a 370 E 
Emulator and the IBM 3081 K. The number of revolutions 
was varied between 30 000 and 300 000 using a HERA 
optics with a fixed realistic multipole distribution 
due to norlinear field errors in the superconducting 
magnets. 

Wmerical results 

The separation of adjacent phase space points as a 
method of diagnosing chaos has already been used in 
accelrator physics in investigations of the beam- beam 
interaction /3/ and as a first step we have used this 
method for investigating pure horizontal motion (i.e. 
without coupling to the vertical betatron motion). For 
regular motion with oscillation amplitudes well within 
the dynamical aperture the trajectory separation 
increases linearly as expected but chaos was found 
close th the limit of the dynamical aperture. Fig. 1 
shows a section of such a trajectory with a highly 
enlarged scale. 
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Fig. 1: Chaotic motion of a particle close to the 
dynamical aperture 

The exponential growth of the distance between 
trajectories starting at two adJacent points in this 
chaotic region is shown in Fig. 2. The saturation is 
due to the boundedness of the available phase space. 
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Fig. 2: Separation of trajectories for chaotic motion Fig. 5: Separation of regular trajectories 

Whereas these results follow nicely the general 
scenario of chaos in nonlinear two-dimensional maps as 
described for example in /l/, little is f";,o:; ab;$ 
the onset of stochasticity in 
higher-dimensional maps. The calculations performed 
for the fully coupled betatron oscillations are just a 
first step in this direction. The results are 
summarized in Fig.'s 3 to 8. Fig's 3 and 4 show the 
projections of a regular orbit onto the x-p -plane and 
the x-z-plane respectively. The sepa%ation of 

trajectories is linear as expected and is demonstrated 
in Fig. 5. 

Fig. 's 6, 7 and 8 are the corresponding pictures of 
typical stochastic trajectories which again can be 
observed close to the dynamical aperture and which do 
not lie on smooth two dimensional surfaces. 
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Fig. 3: Regular motion: projection onto x-px-plane 
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Fig. 6: Chaotic motion: projection onto x-px-plane 
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Fig. 7: Chaotic motion: projection onto x-z plane 

Fig. 4: Regular motion: projection onto x-z-plane 
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Fig. 8: Separation of chaotic trajectories 
(logarithmic plot) 

Summary and conclusions 

Numerical calculations for transverse particle 
motion have been performed for a HERA proton ring with 
nonlinear multipole fields. Until now, detectable 
chaotic regions have only been observed near the limit 
of the dynamical aperture both in the uncoupled case 
and in the coupled case. The calculations for the 
uncoupled two-dimensional case show all the features 
normally associated with chaotic behaviour in 
nonlinear two-dimensional maps. In this case the 
existence of KAM trajectories also implies stability 
of the system. However, because of the possibility of 
Arnold diffusion /l/ such a stability criterion cannot 
be derived from the existence of invariant KAM 
surfaces in the four-dimensional case. Also, 
relatively little is known about the break up of these 
two-dimensional surfaces in four-dimensional phase 
space and further investigations are certainly needed 
for a better understanding of the pictures 5 to 8. The 
situation is even more complicated since a complete 
picture of the single particle dynamics in storage 
rings with nonlinear fields must also include the 
effect of synchrotron oscillations thus leading to the 
study of six-dimensional nonlinear maps. 
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