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A NEW FFAG ORBIT CODE” 

Philip F. Meads, Jr. 
7053 Shirley Drive 

Oakland, California 94611 

A new digital computer code has been written 
for studying motion in scaling fixed-field 
alternating-gradient synchrotrons (FFAG). The 2600 
line code, written in Pascal, has been run on several 
computers, from the lap-size Sharp PC-5000 to a VAX 
11/780. The azimuthal field profile over one sector is 
fit with a periodic array of up to 400 cubic zplines. 
An eighth-order Runge Kutta integration method, 
suggested by R. Servranckx, is used. Resonant growth, 
or lack thereof, is shown by means of real time 
transverse phase space plots. 

may be run in the radial plane (two equations) or both 
planes (four equations) with the axial contributions 
either linearized or extended to include third-order 
terms. One can thus determine (1) the absolute radial 
stability limit, (2) the radial limit for which 
small-amplitude motion in the axial plane remains 
small, and (3) the vertical stability limit. Unstable 
fixed points can be located directly. 

Introduction 

Motivation 

The FFAG accelerator, which was 80 thoroughly 
studied at MURA two decades ago, now shows great 
promise as a moderate cost means of achieving great 
intensities of spallation-bred neutrons. For this 
reason, it is being studied both at Argonne National 
Laboratory and at the Kernforzhungzanlage, Juelich. 
Although a great many isochronouz cyclotron versions of 
the FFAG principle exist, no ion zynchrotron versions 
have been built. 

The MURA codes designed to study FFAG 
accelerators were written in machine language for the 
IBM 704 Computer and are thus not usable today. The 
code here described was written to fill the gap. 
Following the author’s current passion, tt was written 
in Pascal in order to be easily followed and operable 
on a great variety of computers. Most of the 
development was done on the author’s Western Digital 
“Pascal Microengine”, which is able to compile the 
entire code in two minutes. 

Method 

FFAG synchrotrons have much stronger 
nonlinearitiez than the usual alternating-gradient 
synchrotron. In particular, an adequate study of the 
stability limits in the vertical plane requires the 
inclusion of some nonlinear terms--at least those that 
yield tune shifts with amplitude in the vertical plane. 

The methods used are basically those of the Oak 
Ridge National Laboratory cyclotron cpdes (e.g., #1482) 
as described by Welton Cl]. These have been extended 
to include third-order terms in the axial direction in 
order to be able to determine the axial acceptance. 
The ORNL methods are very fast and yield the exact 
motion in the median plane. 

In this FFAG code, six simultaneous equations 
are integrated to locate the closed orbit. Using the 
radial transfer matrix thus derived about a trial 
orbit, corrections are made and the process repeated 
until convergence is achieved. The error in closing is 
generally reduced by one to two orders of magnitude per 
iteration. Once the closed orbit is determined, four 
more equations are added in order to obtain the linear 
properties in the axial plane also. The extreme values 
of the Courant and Snyder amplitude functions are also 
determined. 

Having the closed orbit, nonlinearities may be 
analyzed in several ways. A great number of orbits may 
be run through one sector to provide fitting data for a 
canonical transformation program r.21. Single orbits 

Magnetic Field Representation 

The code treats scaling fields that are free of 
error. The magnetic field in the median plane is 
completely determined by giving the field index, k, the 
spiral angle, & , and the azimuthal profile of the 
magnetic field over one sector. The azimuthal profile 
is normally given as an irregular mesh. This mesh is 
fit with a series of (up to 400) cubic zpline functions 
such that the profile and its first two azimuthal 
derivatives are continuous at each mesh point, and the 
zplinez are periodic. With the periodic condition 
dropped, the splinez are determined by a Gaussian 
reduction algorithm that operates on a 
diagonally-dominant matrix whose non-zero elements can 
always be stored in an array of size 3, where n is the 
number of mesh points 131. The solution with the 
periodic condition imposed is determined by an 
iterative method that uses the reduced matrix to 
quickly converge on the desired solution. The 
azimuthal profile may also be given by mean8 of Fourier 
harmonics; however, the zpline representation is far 
faster. 

Only the median field is needed to obtain the 
exact motion in the median plane, and only the first 
radial and first azimuthal derivatives are needed to 
obtain the linearized motion in both planes about the 
closed orbit. To include higher order terms in the 
axial motion, we expand the axial component of the 
magnetic field as a power series in z; however, because 
of the symmetry condition, only even terms can exist in 
this expansion: 

l3p,J, = z if’ 8&i @I. 
Ignoring the current in the beam, the cur; of the field 
vanishes, and thus we can obtain the radial and 
azimuthal components from the axial field: 

pz * $+I a$(vlj pq& a”” !F$- 
The vanishing of the divergence provides us with a 
recursion relationship sufficient to obtain all terms 
from the median-plane field: _ _ 

fj =- .j+2 ’ j$+ -$$g rs,s(c’e). (%Lj+-d C&4 1 
The median plane field for a scaling FFAG iz 

given by: 
6plT. &O) = tk SW), 

where p=Mhf@-hbnL/n%,{, with L being the spiral 
angle. Note thatwe can write 

~~(~an = rtz (2/hjz” b,jLq ( c Qq, 
which shows the!:?nvergence of the series for the FFAG 
where z<<r. The first two terms are: A. -r s(p) ; 
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We do not need any more for motion including 
third-order terms of the axial motion (but still exact 
for the radial COntributiona). We see that we will 
need the first three azimuthal derivatives of the 
median plane field. The third derivative of the apline 
representation is not continuous, but we can make the 
error sufficiently small by choosing an adequately 
dense mesh. 

Integration Method 

The code uses an eighth-order Runge-Kutta 
Integration method by Shanks [4], suggested by R. 
Servranckx [5]. Although the method requires ten 
evaluations of the derivatives per integration step, 
the resulting eighth-order-polynomial fit is sufficient 
to allow very large steps for a given accuracy, and 
thus it is significantly faster than the usual 
fourth-order method. Recently, a variable step size 
has been provided. Also a transformation may be 
invoked in lieu of the integration for steps where the 
field and its azimuthal derivative are sufficiently 
small. 

output 

The code determines the closed orbit, betatron 
frequencies, Courant and Snyder functions, and extreme 
values of the beta function and their location. For 
stability runs, coordinates -- both actual and 
normalized, Courant and Snyder invarianta, and maximum 
values for the invarianta with location are available. 
Parameter surveys provide single-line summaries for 
each system. Non-cyclic orbits (e.g., injection, 
extraction, stripped heavy ions) can be tracked. All 
output is oriented for use with plotting programs such 
as the KFA SNQ-ABT'a ICM [61. 

The code is menu-driven, but the menu is 
dynamically adjusted to contain only operations legal 
at the time. 

Accuracy 

The closed orbit and linear motion have been 
checked against simple machines where analytic 
solutions are available. The determinants are output; 
with double precision on the VAX 11/780, these differ 
from 1.0 by lE-9 to as little as lE-12; the error is 
less than lE-6 with the Microengine. The accuracy of 
radial-plane aberrations was tested by following the 
locus of a circle displaced in both distance and angle 
relative to the closed orbit; this is an excellent test 
as the linear approximation of such a trajectory is 
poor indeed. In every case, the error was less than 
lE-6 with single precision arithmetic. Published 
calculations and measurements for the MURA Mark V 
spiral model [7] were accurately duplicated. 

Application to a Spiral-Sector FFAG 

Extensive calculations have been done on an 
FFAG as a possible component in the German apallation 
neutron source (SNQ). The design is based on the ANL 
ASPUN design [S]. The azimuthal profile used was 
derived from a relaxation solution in the MURA 
transformation coordinates [91; it is shown in Fig. 1. 
With this 20 sector, low flutter field, it was 
necessary to make the spiral angle 70.52 degrees with 
k=14.6 in order to obtain the desired tunes of 4.25 (r) 
and 3.25. The courant and Snyder amplitude functions 
are shown in Fig. 2. 

Even though the high current to be accelerated 
requires a very large beam emittance, the radial 
stability limit as shown in Fig. 3, is an order of 
magnitude larger than that needed. In Fig. 4, a 

similar plot for a sharper fringing field (smaller 
spiral angle) is shown. The threshold in radial 
amplitude for vertical growth, obtained with one 
linearized axial equation (fast!), ii almost exactly 
the same as that derived from the graphs of Parzen and 
Morton [lo]. 

We show the effects of coupling in Fig. 5 
(including non linear terms) and Fig. 6 (linearized 
vertical motion). The motion shown is unstable (the 
radial emittance is about 12 times that required for 
the SNQ), but it is interesting to see that the 
essentials of the motion are contained within the 
linearized vertical motion. This particular ring does 
not have an adequate vertical stability limit; however, 
a alight reduction in spiral angle, which can be 
achieved with a small increase in flutter, does provide 
an ample margin. 

These studies to date are baaed on an 
error-free field and thus show only the effects of 
essential resonances. Further details on both the 
program and the FFAG studies are contained in a series 
of KFA SNQ-ABT (Abteilung Beachleuniger Technoligie) 
notes. 

Future Extensions 

Depending upon the availability of funding, it 
is planned to extend the code to include error fields, 
to extend to a 2-D mesh for the study of nonscaling 
machines, and to incorporate measured fields in three 
planes Cl11 when such become available. 
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Fig. L. Phase space contours showing radial 
stability limit for FFAG with sharper fringing fields. 
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Fig. I. Azimuthal field profile and aztmuthal 
derivative. 

Fig. 5. 
plane. 

Exact motion--Projection onto the axial 
Plotted once per sector for 800+ sectors 

(motion is unstable). 
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2. Courant and Snyder amplitude function 
sector of spiral FFAG. 
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Fig. 3. Phase space contours showing radial 
stability limit for FFAG with field of Fig. 1. 

Fig. 6. Linearized axial motion--Projection onto the 
axial plane. Compare to Fig. 5. 


