© 1985 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the |EEE.

IEEE Transactions on Nuclear Science, Vol. NS-32, No. §, October 1985

THE CHAOTIC DYNAMTCAL APERTURE™

S.Y. Lee and S. Tepikian

Introduction

Nonlinear magnetic forces become more important
for particles in the modern large accelerators.! These
nonlinear elements are introduced either intentiomally
to control beam dynamics or by uncontrollable random
errors.2 Equations of motion in the nonlinmear
Hamiltonian are usually non-integrable. Because of the
nonlinear part of the Hamiltonian, the tune diagram of
accelerators is a jungle. Nonlinear magnet multipoles
are important in keeping the accelerator operatiocn point
in the safe quarter of the hostile jungle of resonant
tunes. Indeed, all the modern accelerator design have
taken advantages of nonlinear mechanics. On the other
hand, the effect of the uncontrollable random multipoles
should be evaluated carefully.3 A powerful method of
studying the effect of these nonlinear multipoles is
using a particle tracking calculation, where a group of
test particles are tracing through these magnetic
multipoles in the accelerator hundreds to millions of
turns in order to test the dynamical aperture of the ma-
chine. These methods are extremely useful in the design
of a large accelerator such as SSC, LEP, HERA and RHIC.
These calculations unfortunately takes tremendous amount
of computing time. 1In this paper, we are trying to
apply the existing method in the nonlinear dynamics to
study the possible alternative solution. When the
Hamiltonian motion becomes chaotic, the tune of the ma-
chine becomes undefined. The aperture related to the
chaotic orbit can be identified as chaotic dynamical
aperture. In the following review the method of deter-
mining chaotic orbit and apply the method to nonlinear
problems in accelerator physics. We then discuss the
scaling properties and effect of random sextupoles.

Chaotic Transition

The equations of motion of a particle in the
Yamiltonian system is given by
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with certain given initial values (q;(0), p;(0)}.
Nonlinear Hamiltonian are in general non-integrable.
Henon and Heiles# found that a nonintegrable motion does
not lead to chaos, which is in accord with the KAM
theorem.? As the amplitude of the Hamiltonian motion
grows, the motion may become chaotic because of larger
nonlinear perturbation.

A distinct character of transition to chaos is the
positive Liapunov exponent,® which was observed in the
numerical experiment of Henon-Heiles potential.4 For a
chaotic orbits, the distance between two trajectories,
with infinitesimal separation initially, will grow
exponentially with "time". The growth rate is called
the Liapunov exponent. For a regular orbit, the
Liapunov exponent is zero. A simple test of the
Liapunov exponent criteria is BDT test,’ where one study
the Liapunov exponents around the transition boundary
surfaces. To be specific, let us comsider two
trajectories (q0(t), po(t)) and (q(t), p(t)), with infin-
itesimal separation. Let N and £ be the separation of
these two trajectories, i.e.
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The equation of motion for N and F. are given by
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where we have assumed Taylor series expansion for the
Hamiltonian around these two infinitesimal near
trajectories.

A truncation of eq. (2), up to the first order,
gives us a linear system of equations.
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Linear equation can be solved by assuming
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Equation (4) becomes the secular equatioa for solving
the eigenvalues.
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The stability or the regulatory of the Hamiltonian mo-
tion requires that the real part of the eigenvalues are
negative on the invariants of the Hamiltonian. This
method has been successfully applied to analyze
Hamiltonian systems. As an example, the eigen—exponents
are found to be negative for the Henon-Heiles potential,
3
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provided that the energy E < 1/12. The escape energy
is Beg = 1/6 for the Henon-Heiles potential.

Application to Accelerator Physics

Strong focusing large accelerator has alternate
focusing and de-focusing elements. The average effect
for a particle moving in the accelerator will experience
a transverse focusing and moves approximately in a har-
monic oscillator potential well. Because of strong fo-
cusing, the particle in the beam will suffer chromatic
effect. Sextupole elements are used to correct the
chromaticity of the accelerators. The Hamiltonian for
a particle in the accelerator can be expressed as
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Here s is the position along the accelerator and % =
dx/ds ¥ = dy/ds and by(s), byp(s) are respectively
strengths of quadrupoles and sextupoles. The
Hamiltonian is piecewise conserved. The Hamiltonian is
however not conserved along the accelerator. Without
the sextupoles, the conserved quantity is the Courant-
Snyder invariant® or the emittance of the beam. Because
of the alternating gradient principle and small betatron
phase advance across each elements, we approximate the
Hamiltonian by the average focusing and sextupole
strength, i.e.
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Let us change the coordinate into & and N, with
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The transformed Hamiltonian becomes the Henon-Heiles po-
tential, i.e.
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It is well-known that the critical energy for the cha-
otic orbit transition is E, = 1/12.

Let us now make the following assumption: The
energy of the Henon-Heiles potential in eq. (12) is re-
lated to the amplitude of the transverse motion in the
accelerator, i.e.
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The amplitude can be translated into the critical
emittance and B function as
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Thus the critical amplitude of the transverse motion are
related to the average focusing strength and sextupole
nonlinear strength. A larger b and smaller by can

give larger dynamical aperture of the beam. But we
shall see that a larger by will naturally lead to a
larger SZ‘

Scaling Properties of Accelerators

Let us consider a simple large accelerator, which
consists of only regular FODO cells. The following
lattice properties can be deduced
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where T, U and d are respectively length, phase advange
and beam bending angle of the FODO cell. 4§ is the qua-
drupole focusing strength, rB'dE/BD, and by = B'/Bp is
the renormalized quadrupole gradient. The natural chro-
maticity can be obtained from
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The chromatic sextupoles are used to correct the
natural chromaticity, i.e.
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where the sextupole strength is obtained by making the
total chromaticity of the machine zero, Ey + &g = 0.

We found that
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The average focusing and sextupnle strength are
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Thus the ratio by/b; depends on the length
of the cell only through Ld, which is a more or less
constant number for all accelerators. The dynamical
aperture is thus a function of only phase advance U,
i.e.
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We note that the dynamical aperture due to the
chromatic sextupoles are larger for smaller phase ad-
vance per cell. This is understandable because we have
assumed only the chromatic sextupoles. Therefore the
strength of sextupole will be much smaller for a weaker
quadrupole field. As an example, in the SSC reference
design 4, L6 = 3.25m, W = 80°, we obtain x, = G690OW®,
Tracking calculation gives 600™M dynamical aperture
with only FODO cells. For RHIC, Lb = 1.15®, u = 90°



we obtain x, = 87™, The tracking calculation gives x. 6.
= 52MM yhich include the insertion.

Effect of random é%xtupoles. The estimated random sex- 7.

tupoles in $SC design A due to errors in coil placement

are Dby = 1.6 * 107% cn™2 and Aay = 1.4 & 107% co2,

Therefore, we have 8.
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where 0 is the magnetic radius of curvature. For 6.5T

field strength and 20 TeV energy,

p=1.03 % 10" n

and
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Since this is much larger than the chromatic sextupoles,

we can neglect the effect of chromatic sextupoles. The
dynamical aperture becomes
4 sin;
X = .266 5 - " (23
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At T, = 200™ 4 = 80°, we obtain x, = 114™", The

dynamical aperture is reduced by a factor of six due to
random sextupoles.

Conclusion

In conclusion, we have made an effort in applying
the nonlinear dynamics to define a chaotic dynamical
aperture for accelerator. We examine, as a simplest ex-
ample, the problems related to the chromatic correction
sextupole and discuss the scaling properties of the ac-
celerator. Random sextupoles are found to be much more
important than the chromatic sextupoles.

We did not discuss, at all, the effect of higher
random multipoles. The analysis becomes somewhat more
complicated. More work is needed.

In the present analysis, we do not discuss the res-
onance condition. Here we have assumed no resonance con-
dition for the tune of the machine. The effect of reso-
nance may further decrease the dynamical aperture.
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