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Introduction ~-- 

Nonlinear magnetic forces become more important 
for particles in the modern large accelerators.1 These 
nonlinear elements are introduced either intentionally 
to control beam dynamics or by uncontrollable random 
errors. 2 Equations of motion in the nonlinear 
Hamiltonian are usr~ally non-integrable. Because of the 
nonlinear part oE the Hamiltonian, the tune diagram of 
accelerators is a jungle. Nonlinear magnet multipoles 
are important in keeping the accelerator operation point 
in the safe qllarter oE the hostile jungle of resonant 
t11nes. Indeed, all the modern accelerator design have 
taken advantages of nonlinear mechanics. C~I the other 
hand, the effect of the uncontrollable random multipoles 
should he evaluated carefully.3 A powerful method of 
studying the effect of these nonlinear multipoles is 
using A particle tracking calculation, where a group of 
test particles are tracing through these magnetic 
multipoles in the accelerator hundreds to millions of 
turns in order to test the dynamical apertrlre of the ma- 
chine. These methods are extremely useful in the design 
of a large accelerator such as SSC, LEP, HERA and RHIC. 
These calculationg unfortunately takes tremendous amount 
of computing time. In this paper, we ate trying to 
apply the existing method in the nonlinear dynamics to 
study the possible alternative solution. When the 
Hamiltonian motion becomes chaotic, the tune of the ma- 
chine becomes undefined. me aperture related to the 
chaotic orbit can be identified as chaotic dynamical 
apertrlre. In the following review the method of deter- 
mining chaotic orbit and apply the method to nonlinear 
problems in accelerator physics. We then discuss the 
scaling properties and effect oE random sextupoles. 

Chaotic Transition 

The equations of motion of a particle in the 
Samiltonian system is given by 

. aH 
qi = ~ 

‘i (i = 1, N) (1) 
. aH 
pi=-aqi’ 

with certain given initial values (qi(O), pi(O)). 
Nonlinear Hamiltonian are in general non-integrable. 
Henon and Heiles4 found that a nonintegrable motion does 
not lead to chaos, which is in accord with the KAM 
theorem.5 As the amplitude of the 'lamiltonian motion 
qrows, the motion may become chaotic because of larger 
nonlinear perturbation. 

surfaces. To be specific, let us consider two 
trajectories (qo(t), pa(t)) and (q(t), p(t)), with infin- 
itesimal separation. Let n and 5 be the separation of 
these two trajectories, i.e. 

A distinct character of transition to chaos is the 
positive Liapunov exponent,6 which was observed in the 
numerical experiment of Henon-Heiles potential.4 For a 
chaotic orbits, the distance between two trajectories, 
with infinitesimal separation initially, will grow 
exponentially with "time". The growth rate is called 
the Liapunov exponent. For a regular orbit, the 
Liapunov exponent is zero. A simple test of the 
Liapunov exponent criteria is BDT test,7 where one study 
the Liapunov exponents around the transition boundary 

l)T-p-p0 

[ :q -q" 

The equation of motion for rl and E are given by 

222.5 

where we have assumed Tavlor series expansion for the 
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Hamiltonian around these two infini.tesimal ?ear 
trajectories. 

A truncation of eq. (21, up to the first order, 
gives us a linear system of equations. 

where 

D= (5) 

Linear equation can he solved by assuming 

F,qnation (4) becomes the seclllar equation for solving 
the eigenvalues. 

111 - D(\ = 0 (7) 

The stability or the regulatory of the Yamiltonian mo- 
tion requires that the real part of the eigenvalues are 
negative on the invariants of the Hamiltonian. This 
method has been successfully applied to analyze 
Hamiltonian systems. As an example, the eigen-exponents 
are found to he negative for the Henon-Heiles potential, 

H = ; (;” + ;” + x2 2 
+ y 1 + (x2y -$"!I 

(8) 

provided that the energy E < l/12. The escape energy 
Is Ees = l/6 for the Henon-Heiles potential. 

Application to Accelerator Physics 

Strong focusing large accelerator has alternate 
focusing and de-focusing elements. The average effect 

effect. 

for a particle moving in the accelerator will experience 

a transverse focusing and moves approximately in a har- 

Sextupole elements are used to correct the 

monic oscillator potential well. 

chromaticity of the accelerators. 

Yecause of strong fo- 
cusing, the particle in the heam will suffer chromatic 

The Hamiltonian for 
a particle in the accelerator can he expressed as 

*Work performed under the auspices of the U.S. Depart- 
ment of Energy. 
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&=hl$ , L6 = 4 sin! 

SF =y -$&Cl + sini-') 2 9 SD+&1 -sin? (15) 

H(l) = $ (c2 + ;* + b1(s)x2 - h1(s)y2) 

(9) 

+ b2(s)(x2y - $') 

Here s is the position along the accelerator and G = 
dx/ds $ = dy/ds and hi(s), b2(s) are respectively 
strengths of quadruuoles and sextupoles. The 
Hamiltonian is piecewise conserved. T% Hamiltonian is 
however not conserved along the accelerator. Without 
the sertupoles, the conserved quantity is the Courant- 
Snyder invariant8 or the emittance of the beam. Becsuse 
of the alternating gradient principle and small betatron 
phase advance across each elements, we approximate the 
Hamiltonian by the average focusing and sextnpole 
strength, i.e. 

ty = L(G2 + ;2 tbx 2 
2, 1 

t b-p21 + G2(X2Y - $5 
(10) 

Let us change the coordinate into c and Q, with 

b2 [=-T-C 

bl 

b2 
(11) 

n=_l, 

bl 

The transformed Hamiltonian 
tential, i.e. 

becomes the Henon-Heiles po- 

It is well-known that the critical energy for the cha- 
otic orbit transition is EC = l/12. 

Let us now make the following assumption: 'Ihe 
energy of the Henon-Heiles potential in eq. (12) rre- 
iated to the amplitude of the transverse motion in the 
accelerator, i.e. 

2 23 1 
h=Ao+TAo=E 

or 
A0 = .266 

The amplitude can be translated 
emittance and 8 function as 

into the critical 

bl = .%66 - 
b2 

(14) 

Thus the critical amplitude of the transverse motion are 
related to the average focusing strength and sextupole 
nonlinear strength. A larger bl and smaller 62 can 
give larger dynamical aperture of the beam. But we 
shall see that a larger 5, will naturally lead to a 
larger G2. 

Scaling properties of Accelerators 

Let us consider a simple large accelerator, which 
consists of only regular FODO cells. The following 
lattice properties can be deduced 

1 . u 1 
x IF) = g l + 7 "'"Z 

P‘ 4.1.12F' 
! ) 

x (D) = LItI 1 - i sin; 
P 4 u 2 

Sly ( ! 
sin-;- ‘. 

where L, U and a are respectively length, phase advanpe 
and beam bendino, angle of the FODO cell. 
drupole focr~sing strength, fB'dR/BO, and h: ~'B'~~D~~~- 
the renormalized quadrllpole gradient. rhe natural chro- 
maticity can be obtained from 

!A!2 u 
F 
‘N = $ = - j&j hl(s)ds = - F (16) 

P 

The chromatic sextupoles are 
natural chromaticity, i.e. 

? 

used to correct tFle 

Es = &j r%)xp(s)b2(s)ds = &~maxxp(F)~ s 

-8 minxp(D)b2(D)RS) 
(17) 

(1 + &inE)L2h 2 ? = 
81.1 cos$sini)2 
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where the sextupole strength is ohtained by making the 
total chromaticity of the machine zero, sy + CS = 0. 

We found that 

16(sin;)3 

s2 
= b2!$ = 

L2Nl + sinU) i (18) 
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The average focusing and sextlrpole strength are 

n 4si+ 

hl=x=T? 
(19) 

A 
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1 u (20) 
L‘L(1 + sin-) z 2 

Thus the ratio bl/h2 depends on the length 
of the cell only through La, which is a more or less 
constant number Ear all accelerators. The dynamical 
aperture is thus a function of only phase advance !.I, 
i.e. 

Lb(l t $int) 
X = .266 (21) 

C 4(sinF)2 - 

We note that the dynamical aperture due to the 
chromatic sextupoles are larger for smaller phase ad- 
vance per cell. This is understandable because we have 
assumed only the chromatic sextllpoles. Therefore the 
strength oE sextupole will be much smaller for a weaker 
quadrupole field. As an example, in the SSC reference 
design A, Lh = 3.25m, I-I = 80a, we ohtain xc = 69Omm. 
Tracking calculation gives AOOmm dynamical aperture9 
with only FODO cells. For RHIC, La = l.15m, U = 90' 



we obtain xc = 87mm. 
= 52mm, whit\ include 

The tracking calculation gives xc 6. 
the insertion. 

Effect 0E random s xtuO0les. the estimated random sex- -- 

are hb? = 1.6 * lO'~<~-~nd Aa2 = 1.4 .,v 1iT4 cm -. " 
ttlpoles in SSC desl n A due to errors in co11 plac_;ment 

Therefore, we have 8. 

-4 

5 v5 
* lo4 -3 = J- ((1.4)* + (1.fj)2.1!5 * COTm , (22) 9. 

where P is the magnetic radius of cllrvature. For 6.iT 
field strength and 20 TeV energy, 

P = 1.03 * lo4 m 
and 

q 
= 1.5 * 10-4 m-3 . 

Since this is much larger than the chromatic sextupoles, 
we can neglect the effect of chromatic sextrlpoles. The 
dynamical aperture becomes 

u 
x = .266 

4 sin-i- 
(23) 

c 1, 
2 

* 1.5 * 1o-4 

At L = 200m !J = 80' we obtain xc = 114"rm. The 
dynamical aperture :s reduced by a factor of six due to 
random sextupoles. 

Conclusion 

In conclusion, we have made an effort in applying 
the nonlinear dynamics to define a chaotic dynamical 
aperture for accelerator. We examine, as a simplest ex- 
ample, the problems related to the chromatic correction 
sextupole and discuss the scaling properties of the ac- 
celerator. Random sextupoles are found to be much more 
important than the chromatic sextupoles. 

We did not discuss, at all, the effect of higher 
random multipoles. The analysis hecomes somewhat more 
complicated. More work is needed. 

In the present analysis, we do not discuss the res- 
onance condition. Here we have assumed no resonance con- 
dition for the trlne of the machine. The effect of reso- 
nance may further decrease the dynamical aperture. 
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