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INTRODUCTION 

The question of long term beam stability in very large stor- 
age rings presents an extraordinary challenge in nonlinear dy- 
namics. Since current computational methods seem less than 
adequate on the long time scales involved, we have undertaken 
a program of evaluating several methods that either are new 
or have not been tried in accelerator problems heretofore. 

The methods we investigate fall into two categories: (1) 
iteration of maps describing concatenated machine elements , 
for tracking of single particles, and (2) infinite-time methods 
for direct computation of invariant surfaces in phase space. 
Our various proposals can be described briefly as follows: 

1. Tracking, finite time 

Once G is known, the invariant surfaces J = J(d,19) may 
be plotted directly from (2), with the constant K as an input 
parameter. 

We look for periodic solutions of Eq. (4) in the form 

G(d,K,e) = E gmn(K)e’(md-nB) . (5) 
?Il,TL=-CC 

Let us rewrite Eq. (4), by adding and subtracting the first two 
terms in the Taylor series of Ho(K + Gd) : 

v . Gd f Go = 

- IHoCK + Gd) - Ho(K) - v. G4 + F&K + G+ S)] 

(4 

(b) 

‘superconvergent tracking’, an adaptation of 
Kolmogorov-Arnol’d-Moser (KAM) perturbation 

+ [HI(K) - Ho(K)1 > 
(6) 

theory to the finite time problem. 
where v is the zeroth-order tune, 

Local integration of the Hamilton-Jacobi (HJ) equa- 
aHo 

(7) 
tion with respect to the time, the equation being 

v(K) = aK . 

viewed as a system of ordinary differential equations 
for angle-variable Fourier modes of the generating 

If we now take the Fourier transform of Eq. (6), the result 

function. 
for m # 0 is 

2.x 
2. Invariant surfaces, infinite time 2 1 

9 mn = (m. v - n) (2~)~+l / 
dd d0 e -z(m.&no) x 

(a) The original KAM superconvergent perturbation 
theory. 

0 
(8) 

(b) Iterative solution of the HJ equation stated as a sys- 1 
Ho(K + G.+) -Ho(K) - v.GS+F(&K+G6,B)] . 

tern of algebraic equations for the Fourier modes of 
the generating function. 

Since m # 0 in Eq. (8), the 4 - independent term HI - Ha of 

(c) Solution of the equation of (2b) by Newton’s method. 
Eq. (6) does not contribute. Furthermore, since G+ does not 
have an m = 0 component, Eq. (8) constitutes a closed set 

Items (la) and (2b) may be realized in two ways, either in a of equations for the gmn for m f 0. We solve this system by 
conventional quasi-analytic fashion or by a new numerical tech- 
nique in which complexity does not increase as the calculation 

simple iteration, taking G# = 0 on the right-hand side at the 
first step. 

is carried to higher orders. The present report is concerned 
with item (la) in the quasi-analytic realization, and with item 

Once Gd is known, Hr can be obtained by averaging the 

Pb). 
left-hand side of Eq. (4) over 4 and 0 since Gg averages to 

INvARIANT SURFACES THROUGH ITERATIVE 
zero. The fully perturbed tune is then 

SOLUTION OF THE HAMILTON-JACOBI EQUATION 
dHl(K) 

VI(K) = aK > (9) 
In action-angle variables (J,q%) the Hamiltonian of a per- 

turbed integrable system is written as 
which gives the evolution of the new angle variable, 

H(d,J,~) = Ho(J) +F(d,J,O) , (1) 
rc) = $0 + Vl9 . (10) 

where the perturbation F is periodic with period 2~ in q$ and 
Finally, gon for n # 0 is determined by the Fourier transform of 

0 , the latter being the machine azimuth. We seek a canonical 
Eq. (4) for m = 0. The single coefficient goo remains as a free 

transformation (J, $) + (K,(I) in the form 
parameter and can be set to zero without loss of generality. The 
detailed time evolution of the system, usually of less interest 

J = K + G&. K 8) , (2) than invariant surfaces, can be obtained by solving Eq. (3) for 

+=d’+GK(hK,e), (3) 
4 as a function of rl, and 0 and then substituting into Eq. (2). 

such that the Hamiltonian becomes a function of K alone. Bold 
For numerical calculations we truncate the Fourier series in 

face characters denote d-dimensional vectors and subscripts in- 
Eq. (5) and discretize the integrals over 4 and 0. All sums are 

dicate partial differentiation. The new action K will be invari- 
then performed as Fast Fourier Transforms. Since m. v - n is 

ant, and the new angle 4 will advance linearly with 0. The 
a potential small divisor in Eq. (8), v must be chosen so that 

HJ equation to determine G is the requirement that the new 
the divisor is not too small in comparison to the corresponding 

Hamiltonian H indeed depend only on K; namely, 
numerator, if convergence is to be achieved. 

Ho@ T G,& + F(4,K + G+B) + Go = HI(K) . (4) 
Currently we have two computer programs that perform 

the iteration, one for a single degree of freedom and the other 
for two degrees of freedom; each accepts a general Hamiltonian. 

* Work supported by the Department of Energy, contracts We have tested the programs on the isolated resonance model, 

DE-AC03-76SF00515 and DE-AC03-76SF00098. an integrable example in which a complete set of invariants 
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(not identical to K above) can be written down explicitly. 
Checking that the invariants are indeed constant (to a level 
of accuracy consonant with the accuracy in solving Eq. (8)) is 
a nontrivial test of the computation, which is passed success- 
fully. 

In Figs. lc and Id we plot results in two degrees of freedom 
for the ‘difference coupling resonance’ model, 

In Fig. la we show results in one degree of freedom for the 
isolated resonance model, 

H = uoJ + aJ2/2 + eJrnj2 cos(m4 - n0) (11) 

for m = 4 and n = 1. .T’/’ sin 4 is plotted against 5’1’ cos 4 
for two different values of K, where J is obtained as a function 
of 4 (at fixed 0 = 0) from Eq. (2). The parameters were 
chosen to illustrate that the method can handle large orbit 
distortions very close to a resonance. The two curves, which 
hug the separatrix on either side of the resonance island, have 
v = ve + aK = .24812, .2519. At such close proximity to a 
resonance, the value of E chosen is close to the maximum that 
will allow convergence of the iteration; farther from resonance 
much bigger values of c can be tolerated (for instance values 
such that the maximum of F is about 20% of Ho). In the 
example of Fig. la, 12 iterations sufficed to solve Eq. (8) to 
an accuracy 6 = .OOl where at the pfh iteration 

H = ulJ, 4 Y& + cJ1 312~~cos(3~1 - 2d2 - e) , (14) 

for a single choice of the pair of invariants K1 and A-2. The 
plots are ‘surfaces of section’ for & = 0 = 0, first for i = 1, then 
for i = 2. Such plots promise to be quite informative, providing 
information that cannot be obtained by tracking if there is 
more than one degree of freedom; (in tracking, it is difiicult 
to choose initial conditions so as to populate appreciably the 
section 4; = 6’ = 0). Our experience regarding convergence 
and mode truncation in Figs. lb,c, and d is similar to that 
described above for Fig. la. 

SUPERCONVER.GENT TRACKING 

The aim of superconvergent tracking is to calculate a map 
which takes the initial conditions at one point in a magnetic 
lattice to final conditions at some other point. For a circular 
accelerator or storage ring, one would like to calculate the map 
for a significant fraction of an entire turn. Once this map is 
obtained, it can be iterated numerically to discover long term 
behavior. This complements the infinite time approach in that 
stochastic behavior and instability can be studied. 

the norm ]] ]/ being the sum of absolute values of the compo- 
nents of 9 = [gmn]. The mode truncation for this case was 
]m] 5 32, In] 5 32; however, with only 8 modes each for m 
and n the graphs appear the same to the eye. The analytic 
invariant was constant to about 3 digits. Farther from reso- 
nance, say one full resonance width away, one obtains a much 
smaller b with fewer iterations. 

The map is generated by a sequence of canonical transfor- 
mations so that the Hamiltonian after n steps is zero through 
some order in the perturbation strength. If the Hamiltonian 
is zero, then the new variables are simply constant and can 
be used as initial conditions. The map is then obtained by 
applying the transformations in reverse order. This, in effect, 
solves the Hamiltonian-Jacobi equation for a finite interval in 
the independent variable. 

We begin with the Hamiltonian for !inear motion perturbed 
by a small nonlinear part: 

:. 

I I I I I I I I I I 

T o~a%3~b~ 
I I I I I I I I I I _ 

aiK2 
I II I I I I I I I I I I 

Fig. 1 (a) Invariant curves at 0 = 0 for Eq. (11) with m = 
4, 7~ = 0, vo = 0.24, (Y = 0.01, E = 2.25 x lo-*. (b) Invariant 
curves at 0 = 0 for Eq. (13) with ~0 = 1.28333, a = 0.05, E = 
7.4 x 10d2. (c), (d) Surfaces of section for Eq. (14) with 
ul = 0.68411, v2 = 0.49313, E = 0.01, K1 = Kz = 1.0. 

Fig. lb is a non-integrable ‘case with an z3 perturbation, 

H = uoJ + aJ2/2 + t-J312 cos3 I$ sin4 0 , (13) 

evaluated near a third order resonance n/m = 4/3. There are 
fairly strong modes (m, n) = (l,O), (1,Z) in addition to the 
dominant mode (3,4). The figure shows the typical behavior of 
a third order resonance with strong nonlinear detuning. Note 
that the curves shown once again follow the separatrix. 

H=v.J+F(&J,B). (15) 

It is most convenient to work in the ‘interaction representation’ 
which is accomplished with the transformation 

do = 4 - ue 
J,,=J , 

and the new Hamiltonian is given by 

H = F(4o + ve, Jo,e) = Fo(Qo, Jo, ‘4 . (17) 

Fo is of course periodic in I$, the angle variables, but it is not 
periodic in 8. 

Now we perform the first of a sequence of canonical trans- 
formations which are close to the identity, 

Jo = JI + $&do, Jl, ‘4 (18) 

h = $0 + GJ,(40tJl,e) 1 (19) 

which yields the new Hamiltonian 

HI = Fo(40, JI + G#,,e) + G . 

This in turn can be written in the suggestive form 

HI =lFo(40, JI + GdO, 0) - Fo(do, Jl, ‘41 

+ I’% + Fo(4o, J1, e)l . 

(20) 

(21) 

Note that the Hamiltonian has temporarily been left in the 
same mixed variables as G. 

Now we would like to find a G so that the Hamiltonian is 
of higher order in the perturbation strength. If we solve for G 
such that the second bracket in Eq. (21) is zero, and if Fo is of 
order E, then the new Hamiltonian is of order c2. Completing 
the substitution, we are left with 

HI =Fo(do,Jl +Gd,d) - Fo(4o,J1,0) 

= Fl(h,Jl,e) . 
(22) 
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At this point we can return to Eq. (17) to repeat the process. 
Stopping after n steps , we find 

Hn = Fn(4,, Jn, 0) - W2”) , (23) 

and from Hamilton’s equations 

f$, = constant + O(?“) 

J, = constant + O(e2’) . 
(24) 

Thus, provided that e is sufficiently small, 4, and J, can be 
used as initial conditions. 

To illustrate the technique let n = 1 and consider the first 
order transformation. The solution for G is 

8 

G(do, JI, ‘4 = - 
/ 

Ndo, J~,fl’Pe’ . (25) 

8i 

Note that the limits have been chosen so that G + 0 as 0 -+ 8,. 
Thus (41, J1) are the initial conditions at 8 = Bi with an error 
of order e2. Given ($,,Jl) at 6,, we can use Eqs. (16), (18) 
and (19) to calculate (4, J) at 8 with an error of order c2. In 
addition there is another parameter which must not be too 
large, 6’ - 0; zz AR. From Eq. (25) there will, in general, be 
secular terms in G, namely terms that increase linearly with 
A0. These must be controlled by keeping A.0 sufficiently small. 

This method has been carried out through second order for 
one dimension and through first order for two dimensions. Our 
approach is to perform the transformations analytically with 
the aid of an algebraic manipulation program, REDUCE 3.1, 
which then directly writes FORTRAN subroutines to evaluate 
the map numerically. Since the map is an implicit one, it is 
inverted by Newton’s method. 

To illustrate we first present the first order method applied 
to the case of the isolated resonance in Eq. (11). Figures 2a and 
2b show one dimensional phase space at 0 = 0 for the fourth 
and sixth order resonance respectively. For the A0 chosen, the 
calculated points are essentially identical to the exact solution. 
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Fig. 2 (a) First Order tracking for Eq. (11) with (m,n) = 
(4,l). (b) First order tracking for Eq. (11) with (m,n) = 
(6,l). (c) Second order tracking for a sextupole perturbation. 
(d) Second Order tracking for an octupole perturbation. 

To illustrate the second order method we show a sextupole 
perturbation with a sinusoidally varying strength 

(H - b3z3cos 6’) in Fig. 2c, and an octupole perturbation 
with a periodic delta function strength (H - b4x4Jp(s)) in Fig. 
2d. In both cases the tune has been adjusted to be close to 

the main resonance to enhance the effect of the nonlinearity. 
Both figures show the expected behavior and agree well with 
numerical integration. 7 

Finally we show the two dimensional, first order method 
applied to the case of a sextupole perturbation in the neigh- 
borhood of a coupling resonance 2~2 - ~1 = k. Since in this 
case, the two phase space plots are hard to interpret, we plot 
the points (&,&, J1) in perspective at 6 = 0. Fig. 3a shows 
the plotted points while Fig. 3b shows a ruling of the two- 
dimensional surface on which the points lie. The existence of 
the surface (a 2 torus) reflects the presence of two invariants in 
a near-integrable system, and the fact that all plotted points 
evolved from one initial state. Figs. 3b and 3c show phase 
space for the two degrees of freedom separately. We feel that 
the three-dimensional plot may be quite useful in displaying 
tracking data. 
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Fig. 3 (a) Points plotted in (&,&,Jl) space near a cou- 
pling resonance. (b) A ruling of the data in (a). (c), (d) Phase 
space plots of a subset of the data in (a). 

We are presently working on a two dimensional, second 
order program (error - c4) which will use the output of any 
standard lattice program to calculate the map for some arbi- 
trary fraction of a full turn. In doing so we find integrals of 
the form 

I~,,(~) = ’ bl(s’)p(s’)m/2ein(d(sl)-do)ds’ , J (26) 

as well as higher order integrals such as 
J 

/ 
ds’bl(s’)p(S’)m:2ein(i(S’)-~(s))rpg~(S’) . (27) 

Here bl(s) is the strength of a 21-pole field component, p(6) 
is the beta function, and $(s) is the linear betatron phase 
advance. Because bl and p are both periodic with period C, the 
circumference, the integrals are invariant if we shift both .s and 
SO by C. Thus, they are calculated once for a lattice and then 
used to generate the nonlinear map. They also bear a striking 
resemblance to the integrals which yield nonlinear distortions 
of invariant curves in standard perturbation theory. This is 
quite useful in making the connection between the coefficients 
in a nonlinear map and the distortions of the invariant curves 
generated by iterating the map. 


