
IEEE Tn~nsacnons on Nuclear Science, Vol. NS-32, No. 5, October 1985

TEVATRON EXTRACTION MICROCOMPUTER

L. Chapman, 0. A. Finley, M. Harrison, W. Merz
Fermi National Accelerator Laboratory*

Box 500
Batavia, IL 60510

Extraction in the Fermilab Tevatron is controlled
by a n,Jlti-processor Mtiltibus microcomputer system
called QXR (Quad extraction Regulator). QXR monitors
several analog beam signals and controls three sets of
power supplies: the “bucker” and “pulse” magnets at a
rate of 5760 Hz, and the “QXR” magnets at 720 Hz. QXR
supports multiple slow spills (up to a total of 35

seconds! with multiple fast pulses intermixed. It
linearizes the slow spill and bucks out the high
freq?lency components. Fast extraction is done by
outputting a variable pulse waveform. Closed loop
learning techniques are used to improve performance
from cycle to cycle for both slow and fast extraction.
Tte system is connected to the Tevatron clock system so
that it can track the machine cycle. QXR is also
connected to the rest of the Fermilab control system,
ACNET. Through ACNET, human operators and central
compilters can monitor and control extraction through
communications with QXR. The controls hardware and
software both employ some standard and some specialized
components. This paper gives an overview of QXR as a
control system; another paper [l 1 summarizes
performance.

Design Goals

There ‘were many challenges in designing QXR. First
among them were the high speed real-time requirements.
The basic sloi spill bucker cycle runs at 5760 Hz.
Combined with long spill lengths this demands
significant memory for data taken during slow spill.
These data are used between machine cycles to do
closed-loop learning and smoothing.

Another requirement was incremental implementation
of features as they became necessary. For example, slow
spill rjas implemented long before fast. The sequencing
needed by QXR as it tracks the machine cycle is not
trivial. Communications with ACNET and with the power
supplies used to control extraction were also needed.

The goals listed above are somewhat
contradictory. How they were acheived is described
below.

Software

Figure 1 shows a block diagram of the software
modules lir.ked to form QXR. About half of them are
generic and are used in other systems. A few are
borrowed from other systems (PROTG and NIL). The
remaining are specific to QXR. The connect ions
indicate closely associated modules. Typically a
generic module is connected to a module defining QXR’s
use of that generic software. For example, the generic
module ?AN provides a software interface to a front
panel, including routines such as LED ON which turns a
light on. The modules QXRPAN, PROPANT and NILPAN all
define uses for a front panel, including routines such
as SHOW-STATE, which knows what LEDs to use to display
the current state.

Modules below the horizontal line are specific to
the MultiblJs hardware used by QXR (equivalent modules
exist for other hardware environments). Interrupts,
for example, use Multibus-independent generic modules

*Operated by Universities Research Association, Inc.
under contract with the U;S. Department of Energy.

OXR PRDTO NIL GENERIC _ - -----_ _ _
I ;---J----~-----g---

--I-= FSW

/

__-__-__-__- __L___________~
SOFTWIRE PLOCK 01161111

Figure 1

INT6BK and MP; Multibus-dependent generic modules HIS
and HISMP; and applications modules SIS, SHIS, acd
SISQXR.

Generic Software ~~

Some generic software systems were already
available to solve some of the design problems. These
include QBUC, a software debugging tool; GAS, a
software package which implements the micro end of the
standard communications protocol; and PROTO, which
uses GAS to download code into microcomputer RAM. All
three of these programs are prom-based and reside in
the micro.

In addition to the generic software systems just
described, many generic software modules were used.
(These modules are linked to form systems.) Some of
them were created during QXR development but were
written in a generic way and have since been used in
other systems.

The most important generic software module is
OPERA, a simple round-robin non-preemptive multitasking
operating system.

A finite state machine model was chosen to
implement the complex sequencing needs. Generic code,
FSM, was written for this job. FSM is used by
specifying a state table [including legal transitions),
and, for each state, an entry routine, cyclic routine,
and exit routine. The state table and these routines
are written for a specific application and specify what
should happen on entering a state, while in the state
(at some frequency), acd on leaving the state.

State changes are usually caused either by timing
out or by interrupts from the clock system. They may
also be caused by operator intervention but this is
only done during debugging.

Other generic modules provide services for
multiprocessor systems, interrupts, alarms, device
drivers for the various pieces of hardware used,

0018-94991851 IOCO-2144$01 .OOQ 1985 IEEE

© 1985 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

and interfaces to the other resident software systems
QBUC and GAS.

QXR-Specific Software -____

In addition to the generic modules several modules
were L;ritten specifically for QXR. These modules
define how QXR uses its I/O hardware, how it uses
interrupts, what it is willing to discuss with ACNET,
and most importantly, how it does learning and
smoothing, and the structure of the finite state
machines used. There i3 also a module containing
default values for all parameters. These values may be
cnanged by ACNET, by operators for example.

The heart of the extraction algorithm is in the
cyclic routine for state 7 (slow spill). This
algorithm is executed at 720 Hz and controls the QXR
power supplies. A similar algorithm, run at 5760 Hz,
controls the bucker power supplies. A simplified
versior. is given here:

E !cell) <- (I-Id)*G
Id <- Id-dI
Q <- M(cel1) + E(cel1)

where I - present intensity
Id = desired intensity
dI = change in desired intensity
C = gain
E = error
M = integrated error memory
Q = output to power supplies

Simple learning and smoothing techniques are used
for linearizing the slow spill, removing high frequency
components from the slow spill, and for adjusting fast
spill levels. The learning and smoothing algorithms
are an OPERA task triggerred to run between machine
cycles. For each UceIlff (720 Hz or 5760 Hz cycle) the
following is done:

Learning:
M(cell) <- L*E(cell+P) +

R*M(cell)

Smoothing:
M!cell) < - N*(M(cell-1)+M(cell+l 1)

+ (t-N)*M(cell)

where M - integrated error memory
L = learning rate
E = error memory
P = phase shift
R = retention rate
N = neighbor gain

For fast extraction, learning is done Por each
pulse as follows:

Ir <- Ib - Ia
E <- Id - Ir
V <- V + L*E*C

where Ir =
Ib =
Ia =
Id =
E =
v =
L =
G =

Software Development

intensity removed by pulse
actual intensity before pulse
actual intensity after pulse
desired intensity for pulse
error
level output to power supplies
learning rate for pulses
gain

Assembly language (Motorola 68000) was used for
all programming. This was necessary to achieve the

high speed required for the real-time code. It was
also necessary for the learning and smoothing between
cycles. Even though they do not run in real-time, they
do have to complete before the next cycle begins, and
the huge amount of data to be processed precludes the
use of a high-level language. The disadvantages of
using only assembly language were slower development
time and awkwardness of coding (in particular, the
learning and smoothing had to use a sort of fixed point
arithmetic; floating point would have been too slow).

The software was developed using the BSO (Boston
Systems Office) cross assembler and linker on the
Fermilab Development VAX. (Serious bugs in the BSO
software caused some delays.) A BSO simulator running
on the VAX was used to test some code initially but was
too unwieldy for testing the entire system. For that
purpose, an accelerator simulator was built. A test
QXR was connected to this system instead of to the real
accelerator, allowing QXR to attempt to “extract” beam
even before the Tevatron was operational. This made it
possible for the initial version of QXR to be debugged
and ready when needed.

QXR code is downloaded into RAM rather than burned
into PROM. This was done mainly to speed up software
development.

Hardware

Both QXR and the bucker systems use Motorola
MC68000 microprocessors. The processors reside on a
single board computer designed at Fermilab [21 and used
in multiple applications. Each board contains 16K
bytes of RAM and 32K bytes of ROM. In addition the
computer board has four programmable parallel I/O ports
which are used by the processor to drive a status
display and as control inputs.

It was not clear at the outset whether a single
68000 processor could handle the speed requirements.
Partially for this reason, Multibus was chosen to allow
the possibility of splitting the job among multiple
processors. The software was also designed with this
in mind. It did become necessary eventually and was
done, but not without considerable hardware and
software problems.

The computer boards are located in a 12-slot
Multibus chassis along with a number of other support
boards. Figure 2 shows a block diagram of all system
hardware. Two 512K byte memory boards provide data
storage necessary for the long spill lengths used. RAM
was chosen over disk for faster speed. An eight
channel D/A card is used to generate diagnostic signals

Figure 2

such as ideal spill, error, and power supply reference
waveforms used in the main control room. An interface
board containin@ a DMA establishes the link between the
?lultibus environment and AZNET’s CAMAC datsway. The
interface board was desinged in-house and is used in
nearly all other Yultibus systems at Fermilab. A
second interface card connects the processor to a
serial data link used for transmitting power supply
waveforms around the ring. All the pieces of hardware
in this dedicated iink including the power supply
controllers are standard items used in other systems.
The second interface card also contains the electronics
for decoding clock events and generating processor
interrupts. Enabling and disabling of the interrupts
is under processor control.

There are two four-channel A/D boards that are
used for inputs to the servo loops. The A/D’s run
asynchronously and buffer their data into registers
that the processor can access as memory locations. This
eliminates time wasted waiting for conversions to
finish. Each A/D channel has a gain stage on its input
which is under microprocessor control. The gain is
adjustable from C-10 in .Ol volts/volt steps. Some
gains are adjusted automatically by the processor on
each extraction cycle either as part of a signal
normalization or to maximize resolution of the input.
Other gains are adjustable parameters set by operators
to optimize system performance.

Conclusions

The Tevatron extraction control system was
implemented using as many generic hardware and software
components as possible. During implementation, new
generic components were designed when possible. These
components are now in use in other Fermilab systems.

References

[ll W. Merz et. al., “Operation of the Tevatron
Extraction System,” these Proceedings.

[2] R. W. Goodwin et. al., “An MC68000 Multibus
Compatible Computer Board” FN-330 Internal
Fermilab Note 1380

I

