> © 1985 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The Tevatron Global Radius and Ds System

S. Bristol, C. Kerns, Q. Kerns, H.W. Miller
*Fermi National Accelerator Laboratory
P. O. Box 500
Batavia, IL 60510

२

Abstract

It has been found to he practical to extract a turn-average measurement of burch bearm phase relative to cavity gap voltage. This os signal shows the bunch position on the R.F. wave throughout injection, acceleration and extraction, including coherent synchrotron oscillations when present.

In turn, the time derivative of θs is a direct measure of global radial position error. We use the Os signal, driving a phase shifter in the R.F. lowlevel system, to damp coherent synchrotron oscillitions. Design and operation will be discussed including single beam bunch operation if available.

Introduction

Ever since the discovery of the principle of phase stability, ${ }^{1,2}$ there has been interest in determining the phase position of bunches in an accelerator. Consider the phase angle os shown in Figure 1.

Point b represents the phase position of a bunch, center of charge, in an accelerating bucket; point c the phase position of a bunch in a stationary bucket, where Ds goes to zero. (Interestingly, this longitudinal stability principle was announced 8 years before strong focusing). An equilibrium phase angle can be calculated from the machine parameters including B; in addition, operational interest attaches to dynamic measurements in the actual machine. Compared to a calculated equilibrium Ds, the measured value includes coherent synchrotron oscillation information of considerable diagnostic value. For simplicity, our variable os sums the stable phase angle and oscillations around it.

When it was decided to proceed with a programmed low-level RF system for the Tevatron ${ }^{3}$, our interest in obtaining a a real-time Øs signal from the Tevatron increased considerably because without it the RF system is open loop; the machine has an undamped pole at the synchrotron frequency. This paper discribes what we did to obtain a radial damping signal as well as ooserve the motion of Os over the machine cycle.

The $\emptyset s$ system finds the mean for all the bunches in the machine, averaged over several turns. Because of this averaging, the derived radius signal is termed a "global" signal and the effects of both betatron oscillations and local orbit distortions are highly supressed. (We have not detected them in the output).

The actual averaging is cone by a quartz bandpass filter which has no measurable non-linearity; it sums the 1113 th harmonic of all circulating bunches in the machine. The number of bunches can vary from 1 bunch to -1000. After searching for commercially avallable filters, we selected one used in a single sideband transceiver. It is a four pole filter with a 2 KHz bandwiden and center frequency of 8.83 MHz . Seven were purchased so that phase and attenuation vs. frequency characteristics could be measured and compared. Three pairs were selected. Using 1.8 KHz bancwidth, the phase difference for the best pair was

[^0]1.0 degree and the worst pair 3.5 degrees. With the filters costing only $\$ 60$ each, matching characteristics seemed worthwhile, and permitted higher accuracy in $\emptyset s$. Besides, we later used one of the filters as a feedback element in an oscillator circuit. This became the 8.83 MHz local oscillator feeding mixer $\$ 1$ (See Fig. 2).

The Tevatron is a proton synchrotron. Table I lists some parameters.

*These were the values for 6 RF stations. Recently, the number of RF stations has been increased to $8 .{ }^{4}$

Modus Operandi:

In this section we consider a machine that is accelerating beam acceptably. There is a reference closed orbit precisely defined by the frequency of the RF and the proton B. This orbit has a circumference equal to $\beta \times R F$ wavelength x harmonic number, or

$$
\begin{equation*}
2 \pi R=\beta \lambda h=\frac{\beta c h}{F_{R F}} \tag{1}
\end{equation*}
$$

Note carefully that R is not identical to R_{0}, the machine radius. We may be steering the beam a few millimeters radially by intent. What is R ? R defines the orbit the beam oscillates around and converges to as synchrotron oscillations are damped.

When undergoing synchrotron oscillations, the beam orbit is sometimes larger and sometimes smaller than the reference orbit, "breathing" in and out at the conerent synchrotron frequency in accord with the slight energy variation around synchronous erergy. Plugging in values for the Tevatron, F_{S} for small
amplitude oscillations is:

$$
F s=87.6 \mathrm{~Hz} \sqrt{V \cos \theta} \mathrm{~S} \sqrt{\frac{12 U}{E}}
$$

With V in megavolts and E in GeV. Thus F_{S} at injection is -88 Hz and at 800 GeV extraçion, - 42 Hz . Bccause the revolution frequency
$F_{\text {REV }}=\frac{F_{R F}}{h}=47.7$ Kilohertiz, the number of turns per oscillation, $\frac{\mathrm{E}_{\mathrm{REV}}}{\text { during the cycle. }}$ ranges from -500 to 1200

Frequency and Radius
We see that the beam spends many turns circulating at a radius somewhat different from R, the
reference orbit, and accordingly generates a very slightly different frequency in a beam pickup. Call this frequency E_{B}. Differentiating ec. 1 , we find
the relation for a beam orbit offset by ΔR :

$$
\frac{\Delta F}{F_{R F}}+\frac{\Delta R}{R}=\frac{\Delta B}{\beta}
$$

For our purpose $\Delta 3 / B$ is negligible in the range of 150 Gev and above, so to the 1 st order in small quantities, we can write

$$
\begin{aligned}
& \frac{\Delta F}{F_{R F}}=-\frac{\Delta R}{R}, \text { and for the Tevatron, } \\
& \frac{\Delta F}{\Delta R}=-531 \mathrm{~Hz} / \mathrm{cm} . \\
& \text { Obtaining the Radial Signal }
\end{aligned}
$$

We know that the phase angle between two slightly different frequencies will progress at a rate proportional to the frequency difference ΔF :

Rate of phase change and frequency -

$$
\begin{equation*}
\frac{d \phi}{d t}=2 \pi \Delta F \tag{2}
\end{equation*}
$$

Therefore after we extract the angle for from the machine, we can measure its time rate of change which gives us ΔF, and by (1^{\prime}), we have ΔR.

$$
\begin{equation*}
\Delta R=-\frac{R}{F_{R F}} \quad \frac{1}{2 \pi} \quad \dot{\theta}_{S} \tag{3}
\end{equation*}
$$

$F_{R F}$ varies -2 parts in 10^{5} over the cycle. We are willing to consider it constant for the purpose of (3). We have then, $\Delta \mathrm{R}=$ constant x 略; this displacement of the closed orbit as a whole from R is the global radius signal fed into the phase shifter to damp radial oscillations.

Because the above process of obtaining ΔF involves differentiation, it is necessary to achieve low noise. The phase detector is described in another paper, this conference. Phase detector equivalent input noise is the most significant parameter determining the performance achievable in the Øs sys 5 em.

At this point we will summarize a few things about Fig. 1. First, Ds varies and we want to see the variations. Second, the excursions of $0 s$, point b, are bounded to less than $\pm 90^{\circ}$, and third, there is a slow variation in the period of the wave acd - the period decreasing by about 2 parts in 10^{5} as beam accelerates.

Now refer to Figure 2 .

We identify a signal $F_{R F}$ from the accelerating cavity and another signal F_{B} from beam pickup 56 , in the ring. $F_{R F}$ is a sine wave but F_{B} is a beam bunch signal with missing bunches and harmonics at all multiples of the diroulation frequency up to more than 2 GHz . It is narmonic $\$ 1113$ that we want; the bandpass filter isolates it. Because the center of the filter was 8.83 Mliz (not 53) we heterodyned both $F_{R F}$ and F_{B} to 8.83 .

$$
\frac{\text { Heterodyning to Eliminate Frequency Shift }}{\text { Due To Acceleration }}
$$

The technique to eliminate frequency shift due to acceleration takes three mixers but has the notable advantage that the 1024 Hz change in F_{RF} due to 8
change is identically removed. The result is stable 8.83 MHz signals for both bandpass filters - only the Qs variation remains. The scheme goes as follows: there is a local oscillator at 8.83 MHz (constructed from the third filter). This frequency is mixed with cavity RF in mixer $\# 1$ to produce at the output of the 37 db ENI an upper sideband of F_{RF}. Mixers $\$ 2 \& 3$, using the 61.9 MHz , remove the 1024 Hz frequency change and also translate both signals from 53.1 MHz down to 8.83. Thus there is a signal $61.9 \mathrm{MHz}-\mathrm{F}_{\mathrm{RF}}$ entering filter 1 and a signal $61.9 \mathrm{MHz}-\mathrm{F}_{\mathrm{B}}$ entering filter 2. All mixing is phase transparent; the phase detector working at 8.83 MHz sees the same phase angie as exists botwcen $F_{R F}$ and F_{B}. This angle is the Ds desired.

Because the bardwidth of the filters is 2 KHz , considerably narrower than the spacing between the rovolution frequency harmonios which occur every 47.7 $\mathrm{KHz}, 8.83 \mathrm{MHz}$ "FB" is a continuous sine wave
regardless of missing bunches in the original beam signal. The filter idea was selected as the method of filling in for missing beam bunches, and has worked well in practice. There is an external circuit called the "Beam Regenerator", which takes the $8.83 \mathrm{MHz}, ~ " F_{B}$ " continuous wave and mixes it again with the $61.9 \mathrm{MHz}{ }^{B}$ to reproduce a continuous 53.1 MHz sine wave. This wave stays precisely in phase with the bunches.

Performance

We can sec θ s to within about a degree in long term stability and about . 01 degree dynamically. This corresponds to seeing PM sidebands at -85 dbc and radial oscillations below 10 microns with machine intensity of - 1 E 13 protons.

Beam damping is illustrated in Fig. 3. The upper trace is beam intensity (-7 E 12 PRCTONS) the lower trace is Øs, with injeetion into the revatron at the start of the trace. Note the approximate damping response time of 100 MSEC at injection. Fig. 4 illustrates the same conditions without any damp:ng until about 1.5 seconds after injection. Fig. 5 is with damping and shows beam intensity, and ∇_{s} in the Tevatron from time of injection through end of extraction. We expect damping to ocour as $e^{-k n}$, where n is the number of turns and

$$
k=\frac{g \hat{\alpha R}}{2 \beta^{2} E}
$$

for the Figures was $30 \mathrm{KeV} / \mathrm{mm}$ and E was 150 GeV so we expect e-fold damping in 3500 turns or 73 millisec.

Remarks

The error gain is programmed over the accelerator cycle according to an experimental curve.

The dotted lines in Fig. 2 represent automatic level control that has been discussed but not implemented yet. Without the autometic level control, there is a 40 db dynamic intensity range. The detailed reasons for the anti damping of the open-loop have not been explored. The damping factor could be increased about 5 times with foreseeable improvements.

Acknowledgements

We appreciate Helen Edwards for insight and timely suggestions on this project, and thank Jeneen Irvin and Robert Angstadt for capable construction of Lhe 8.83 MHz oscillator, and Fat Smith for expert word processing.

References

1. V. Veksler, Compt. Rend, Acad. Sci. U.S.S.R. 44, 393 (1944).
2. E.M. Mc Millan, Phys. Rev. 68, 143 (1945).
3. K. Meisner, H. Edwards, J. Eitzgerald, Q. Kerns, "A Low Level RF System for the Fermilab Tevatron", these proceedings.
4. Q. Kerns, C. Kerns, H. Miller, S. Tawzer, J. Feid, R. Webber, D. Wildman, "Fermilab Tevatron High Level RF Accelerating Systems", these proceedings.
5. R. Shafer, et al., "Fermilab Energy Doubler Beam Position Detector", IEEE Trans. on Nuc. Sci., NS28, No. 3, P. 2290 (1981).
6. $\bar{Q} A$. Kerns, et al., "An RF Device for Precision Location of the Beam Position Detectors in the Energy Saver", IEEE Trans. on Nuc. Sci., NS-30, No. 4, p. 2250 (1983).
T. K. Melsner, Fermilab, Private Communication.
7. C.R. Kerns, Q.A. Kerns, H.W. Miller, "Measuring the Orbit Length of the Tevatron", these proceedings.

Figure 1. Illustrating Phase Stability

Figure 4. 200 Millisec./Div.

Figure 5. 5 Sec./Div.

Figure 2.

[^0]: *Operated by Universities Fesearch Association, Inc., under contract with the U.S. Department of Energy.

