
IEEE Transactions on Nuclear Science. Vol. NS-32, No. 5, October 1985

ENGLNEERING A LARGE APPLICATION SOFTWARE PROJECT:
THE CONTROLS OF THE CERN PS ACCELERATOR COMPLEX

G.P. Benlncasa, A. Daneels, P.(Heymans, Ch. Serre
CERN, 1211 Geneva 23, Switzerland

Abstract

The CERN PS accelerator complex has been pro-
gresslvely converted to tull computer controls without
Lnterruptlnq Its tull-time operation (more than 6000
hours per Year with on <average not more than 1% of the
total down-tlmil due to control:: I. The appllcatlon soft-
ware amounts to 120 man-years and 450’000 lnstructlons.
it compares wLth other large software prolects, dLS0
outs lde the acceicrator war Id: e g . Skylab’s ground
support sottware. 1 This paper out1 lnes the application
software structure whLch takes Lnto account technlcal
requirements and constraLnts (resulting from the compl.-
exlty of the process and Its operation) and economical
and managerial ones. It presents the engLneerLng and
management techniques used to promote Implementation,
testing and commlsslonlng wlthln budget, manpower and
time constraints and concludes with experience galned.

Introduction

The PS accelerator complex comprises 2 linear
accelerators a 4 ring synchrot.ron booster (PSB), a
proton synchkotron (PS) , an antlproton accumulator (AA)
and various beam transfer llne.5. It provides various
hLgh-energy physics experiments and other accelerators
on the site with beams of different particles Ln puLses
of I .2 sec. The beam characterlstlcs are modified from
one pulse to the other [“pulse-to-pulse modulation”) in
a repeated sequence called “supercyc1.e” which 1s chang-
ed dally, Lf not hourly, by the operators. There may be
up to 24 beams of 8 different types rn a supercycle.
Any beam of the supercycle in any accelerator is oper-
ated concurrently and In a similar fashion from any of
7 rdcntl.cal general purpose consoles In the main cont-

rol room. 3 Slmllar consoles, of reduced tormat, are lo-
cated in remote areas for local exper*ments. The effort
rnvested in the controls amounts to 200 man-years: 60
for hardware lnterfaclng, 10 for consoles, IO for
system software and 120 In application software. The
hardware budget was 14 MSfr. (In 1976 money).

The new controls 1s based on a network of 20
mln.Lcomputers and 100 microcomputers Interfaced to the
process hardware through serial CAMAC. The minis are
Norsk Data mdchlnes with a multi-program operatlnq SYS-
tern SINTRAN III. There are three cdteqorles: the conso-
le drlvlng computers, one per console; front-end comp-
uters, one per accelerator, central actlvlty computers
for beam sequenclnq and synchronlzatlon, message hand-
ling, etc.. The micros are TMSYYOO located In CAMAC
In CAMAC crates as auxLl.Lary crate controllers. They
execute hard real-time actlvltles: pulse-to-pulse mod-
ulatlon and local data bufferlnq. Programming languaqes
are: ASM for the micros; the manufacturer provrded int-
ermedlate level languaqe NPL and the home-made P+, an
extension of PASCAL, for the mlnls; and the interpreter
Nodal for tests, experiments and not time-crlcltal
applications. 4

Appl*catlon Software

Detl.nltlon: System software embraces operating
systems, network software, programming languages, etc.
Appllcatlon software covers all aspects of process
controls ranglnq from operator lnteractlon and displays
to process and equipment control alqorLthms and data
processlnq.

Requirement-5: The process requirements deal
prlmarlly with performance: 1.2sec cycle, pulse-to-

-pulse modulation requ*rLng 10Oths of set points t&l be
modified from one cycle to another wlthln a wlndow of
30msec. Operator; at the console, either In the main
control room or in remote areas, require safe and
“friendly” InteractIon with responses wrthln O.Ssec,
comprehensive error reporting, up-to-date rnformatlon
as to the status of the machines. In addltlon to selec-
ting analog and video signals, interactrng with the
alarms sys tern, they run up to B different repetltlve
displays (200 refreshed data per second) from program
selection trees. The physlclst relies on the usual 95%
dVdildbLlLty of the beam tor h1.s experiment: the cont-
rols avallabll.lty should thus be around 99%. From the
economics point of view, the controls should have a low
production and life cycle cost: the appllcatlon soft-
ware should provide d frame which 1s versatile, extend-
able .and malntainable for future expansLon and new
applications.

Constraints: First, It was Imposed to use SPS
developments. A pIlot proJect was set up in 1377 to
evaluate the pertormance of the SPS controls in the PS
specific envrronment.5 It was found too slow for the
fdSt cychng PS, The same brand of computers, the same
network system and Nodal could be used, but the SPS
operatlnq system was not adequate and the appllcatlon
software needed redeslgnlng. Next, the conversLon had
to be completed without rnterruptlng the tull-trme
operation of the decelerator complex, and preserving
its Y5b availablllty. T;e pro]ect suffered from
personnel shortage, as permanent staff was drained by
higher prlorlty accelerator and physics prolects. One
hdd to fall back upon Summer and graduate students,
fellows, operators, temporary programmers. They had a
high turnover, as their contracts ran from (1 few months
to 2 years. Around 90 people or all types tpok part in
the appllcatlon programming !

Auplicatlon Morpholosv and Ancllllarv Tools

The appllcatlon software 1s structured in
hIerarchIca layers of modules. Starting tram the
process hardware, the layers a.re defined as follows :6
- RT : &eal-time Tasks, servlclng real-time events,
- IM : Lnterfacc Modules, hiding the protocols of the

CAMAC hardware modules,
- EM : Equipment Modules, hiding the details for

controlllnq the equipment,
- CVM : Composite yarlable Modules which handle beam

physics parameters.
- PM : Process controls Modules,
- OM : Qperator’s rnteractron Bodules, dialoglnq wLth

the operator.
The RT run In the micros, IM, EM, CVM and PM Ln the
front-end mlnls; OM in the Console computers.

Except for the low level RT, all modules are
passive and run under supervlslon of managerial tasks
whose collection is called the skeleton. Further, there
are general facllrtLes for operation (knobs, analog and
video signal observation, trees to call programs, al-
arms, etc.) and hardware controls (beam synchronlzat-
ion, pulse-to-pulse IUOdUldtlon, tLmlnq and power supply
controls, etc.) They are “general” because they apply
to all accelerators. Their degree of generality depends
on the standardlzatlon which 1s achieved for the oper-
atlon, and the controls protocol of devices. The bulk
of the software involves applications WhlCh are

specific to every accelerator. For cost effectiveness
they should have d standard format, and product Len
tools (software templates, editors, etc.) have been
developed ‘as part of the application software project

OolS-9499/85/1ooO-2029$01.000 1985 IEEE

© 1985 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

2030

Finally, the pro]ect size and constraints
roprlate management tools for planning
monltorlng.

Enslneerlns Technlsues

required app-
and progress

&rticlpatlve_ deslsn means that “customers”
(operators, machIne physlclsts), “suppliers” (hardware,
console and computer spec.Lallsts) and all oE the perm-
anent appllcatlon statf took part In the design. Th1.s
was achieved by a proper organlzatlon of the software
team ‘and the design process.

Structured t -----..-1 op-down deslqn was enforced by
the morphology of the appllcatron software which lends
itself naturally to the use of lower level modules
[CVM, EM, TM) and by the convention of using program
structure diagrams as design tool,7 or Pt as design
language. The design resulted in a formal document re-
v.Lewed with customers and suppliers, and their agree-
ment was obtained before starting the programming.

Structured codlnq was quite automatic In case
of Pt; for other languages one attempted to ban non-
structured statements (e.g. “tiO-TO” 1.

A prototvue was developed to evaluate early
Ln the lmplementatlon cycle the performance of the con-
trol system’s most crltlcal Eunctlons: r.e. those per-
formed by the skeleton and some general facilities.

Manasement Techniques

The prolect was implemented by a medium size
team averaging 20 people with a high turnover. Most of
the 90 partlclpants were not familiar with accelerator
controls and needed training for at least 3 months be-
tore becoming productive. The team was therefore org-
anlzed so as to keep tight control over its actlvrtles.

The structure of the Appllcatlon Software
Group reflects the structure of the application soft-
ware 1tsel.f. To stimulate motivation, the layers of
modules were grouped into independent packages and
assigned to teams as indlvldual prolects. The teams
were thus fairly autonomous. There were 3 teams each
headed by a team leader with many years of experience
in controls:
- the Esulpment Controls team concentrated on low level
controls : EMS, IMs and RTs for pulse-to-pulse modulat-
ion and data buffering.
- the Process Controls team covered OMs, PMs, CVMs.
- the General Facilities team had the responsibility of
the beam sequencing system, the trees, etc.

During the design phase these tratns were kept
small so as to be efflclent study teams. They included
the more junior engineers of the permanent statf. When
it came to IinplementatLon, they evolved to programming
teams by hiring additIona programmers.

Participative desl.qn and implementation: the
application software pro]t:ct was conducted collectively
by the project leader and the team leaders: they formed
the “layout team”. From the user requirements and spe-
cificatlon, the prolect leader made an inltlal design
and submltted it to the layout team. Together with
users and suppliers, the layout teams analysed the
requirements, refined the structure, defined rnter-
module interfaces, documentation standards, and dls-
cussed priorities and Implementation strategies. It co-
ordinated the activity of study and programmLng teams,
and ensured cross flow of information between them. The
study teams each deslgned a software layer in detail,
proposed interfaces, identified and designed the var-
LOUS applications fur which they also defined programm-
ing standards that were enforced by templates. Results
and problems were discussed with all members of the
study and ldyout team. The programming teams were
responstble for the implementation of each module.

Interdependence with other controls prom
Lem : the Appl.Wdtion Software group had connections

with other teams respectively involved in operational
aspects, system software, consoles, interfaces and pro-
cess equipment. The Operatlonal Aspects team,machlne
engineers and operators, specified the operational req-
uirements: the general purpose character of the consol-
es and their components. This was Lnput for the Console
team to construct the console hardware and software.
They also det-ined the pulse-to-pulse modulation, oper--
ational accelerator subsets, the various control funct-
ions and the trees to call them. An application soft-
ware engineer participated to evaluate the feasibility
and cost of sume requests. The General FdcLlltles team
then designed the beam sequencing system and the
trees. The list of all control functions, and the def-
lnltlon of the console was input for the Process Cunt-
rols team to design the PMs and OMs. Meanwhile, the
CAMAC Intertace team detlned standard contrul protocols
and designed and built prototypes of CAMAC modules not
commercially available. The Equipment specialists addp-
ted the equipment specitic interfaces to CAMAC stdnd-
ards. This allowed the Equipment Controls team to
design all low level software: EM, IM and RTs.

Plannlnq and Progress monltorinq: used a data
base contalnrng the l.Lst of all software modules, and
programs to compute their progress. With the old cunt-
rol system’s experl.ence, the pilot project, cost estim-
ation techniques, * every module wds estimated in man-
months depending on complexity, real-time requirements,
language, etc. They were grouped In packages of more or
less equal load and drstrlbuted among the programmlng
teams. These packages were further distributed between
the programmers taking into account their preference
for indivrdual or team work, experience, length of con-
tract, vertical or horizontal development. “Vertical”
is when a programmer produces an entire suite of modul-
es from the OM to the RT; “horizontal’ 1s when he prod-
uces modules of one type only (e.g. EMS). The programm-
er’s activities were planned according to schedules and
priorities defined with the users. Milestones were de-
fined ln the lmplementatlon of every module and estlm-
ated as percentage of the total etfort:

deglqn-: system engineering and detailed design, 40’6,
codinq and unit test : 20%
testl.nq: simulation test on a special purpose
computer, 10%; on-line tests without beam productron,
10%; and fl.nally, with beam, 10%.
documentation: supposedly done all alung the ample-
mdntation, with a 10% provision for a f.Lnal update
after commissl.onlng.

The progress was monitored every month. Team
leader’ and programmer drscussed the status ot every
module in terms of milestones that had been reached and
adherence to schedule. This data was entered into the
management data base, and the layout team discussed the
overall status of the project, the progress and
production efficiency. Changes of lmplementatlon strat-
egy were decided to accomodate changes of prlorltres,
schedules UK personnel, and integration tests forecast-
ed. Requests for addition or modifications to modules
under development were closely evaluated. The technrcal
Impact, cost and drawback on the schedule was examined
before the request was entered 1n the plannlnq.

The Desisn and Implementat.lon Historv

The pro]ect was implemented in 3 main phases:
Overall deslqn: was performed by the layout

team from Spring 1978 until end 197&l and took around 5
man-years. It Involved: survey of the various processes
and equipment: analysis and synthesis of user require-
ments; definition of skeleton, general facilltles and
productxon tools; deflnitlon of management style and
tools.

Detailed desisn and prototvpls: all skeleton
modules, first priority general facilities and devel-
lopment tools were designed into details by the study

t.f!ams And ,I prototypu+ constructi,d Thus IO man -years
~,‘,t r’dn tram f~ar.ly 1'379 llntl.1 early 1980. Prototype
tests s~:<I’I ,.tl Ln Wtuber 17'7!) The skeleton, qenrral
t.li:LtLtiej and .an rntli’e vert~cdl suite r:: appllcat:on
mCirillle:j, WC?Lr: tt?Sted On Spare :>fI--l Lili? [lOWf?r SUPPLLCS;

tLrst Ln noli pulse-to-plllae modulatLon mode, next In
plllse to-pulse modulation wLth s.Lmulated beam cyl:lej

Iml>lementation Ln slices: the P!;E c ‘i n t r 0 I s
WdS converted +Lrst toqcther wLth all AA low-level

sortware .and some general C.lcllLtLes. This was a major
package oT 40 “an-years: 35 for PSB and 5 for AA. The
PSB 1.3 a small accelerator, but sufficiently s.Lgni.flc-
ant for the controls to cover all aspects. It was d new
machLne at that time and almost tully computer-contr-
olled by the old system. The appllcatlon group had
sufflclent expertise of this machLne, so as to concen-
trate more on the novel control software aspects,
rather than on t.he LntricacLes of the machine ltse.lt.
Th.Ls slice took from mid-1979 to end-19iKI. Next follow-
ed the PS, wLth :jotne follow-up of the prevLous slice
and performance improvement. It ran from beglnnlng 1981
to end--1982 and took 36 man-years. The 3rd slice, the
PS--Ejection and AA high-.level application, went from
e.lrly 1983 to mid-1984, and took 22 man--years, lnclud-
Lng some follow -lip OT both prrvLous s111:r:s. The l,%st
slice was termLnated In February 1985 when the PS was
started with Lts RF under computer control, at the cost
of another 7 man-years.

Experience GaLned_

Th.Ls paper emphasizes the spirit which prevai-
led throughout the prolect: standardization, structur-
Lng, modularlzatlon and management. ‘These features were
novel at CERN for .acclerator controls. It changed the
tradLtrona1 work style and had to be introduced against
prevailing sceptlclsm. It .Ls now gpneral’ty <aqreed that
engLneerLng and management are Just as essential for
large software prolects dS for large hardware ones.

Standardization of operational procedures,
equipment contr0l.s protocols and hardware Interfaces,
result Ln sLnyle data drLven programs, applicable to
any accelerator. It 1s further enhanced by the struct-
urLng into skeleton and specifLc appllcatlons, and use
ot appropriate production tools. It reduces the cost of
implementatLon and also of maintenance through Improved
relLabJ.llty. Modularlzatlon saves on production by cut-
tl.ng down the overal. prolect into small ones and eases
management. This is best illustrated by the later pha-
ses of the prolect where a small team was able to put
all of the PS-RF on--ll.ne .Ln less than a year. Except
for $he PSB, all subsequent slices were converted to
full computer control Ln a more stepwise fashion. Stan-
dardlzatlon and modularlzntion had reached a point
where In shutdowns of a few days only, significant
packages could be installed, tested and commissioned.

Because of the hlerarchlcal and modular struc-
ture, the lmplementatlon could be vertlr:al or horlzont-
al. Vertical was preferred on the basis of people’s ino-
t1wt Lo,,, clearer deflnltlon of responslbilltles and
better quality programs. However, as modules are prog-
rammed In sequence, the elapsed del.Lvery time 1s rather
long. Horizontal implementation ImplLes parallel devel-
opment ot all modules belong.Lng to a system: the dellv-
ery time 1s short but responstbilltles .are diluted lea-
ding to maintenance problems. Unfortunately, the tight
schedule and the short stay of temporary programmers,
Imposed of ten horizontal .implementatLon.

Management was another issue. A strict implem-
entat.Lon plan was def lned, and no modifications to the
origLnally agreed design were accepted during the imp-
lementation. They were executed after completion of the
orLqLna1 plan so as not to disorientate programmers.
Progress monltorlnq tools were essential to assess

progress, for,eca:jt the
1ss10n1nq, and to gLve

The problems
turnover and the tLght

evolutLon, plan tests and comm-
conf tdence 1 n meeting dead 1 i.nen

T
relate to the high personnel

sch?ciU e. Follow-up .cnd mainten-
ancc’ were ,lifflcuLt when a programmer left the orqan%z-
atlon. It was dlftlcult to motLv.itt: someone else to tn-
ke over software, without having hLm redesignlnq Lt
all. AppLLcatLon software 1s last rn the I.mptemcntatlon
sequence of a controls system and 1s continuously
:;queezed between .laqq~ng deliveries tram other partles
and hard operational deadlines. This puts the emphasLs
on quick dellvery, rather than on hLgh quality softwa-
re, and proper documentation. Test tLme 111 early slLce:j
was insufflclent and rcqucsted round t,he clock work.

Part.lcLpatlve desLyn was introduced to enhance
professXona1 stimulatLon, motivdtLon and commitment of
partlclpants, including the users. It left scope for
creatlvlty of the procjrammers who later were involved
Ln dull codLng, but appeared to be less sat.Lsractory
than expected. Deslqn of lntermedlate Layers made them
loose oversLght of the entIre structure and was found
too abstract. VertLcal implementation was preferred.
The rLgldl.ty of the skeleton was not consldered an
obstacle.

Technical problems resulted from lnsufficlent
desLgn of tidta StrUctUreS. The design concentrated on
the functional logic and the corresponding data was
derLved from it more or less ad hoc. Similarly the sys-
tem was desIgned for steady state operation of the dcc-
elerators and controls, overlooking transitory states
such as start-up and shutdown. The depth of design was
never clearly defined: if the deslqn was not suffic-
iently detailed, the initial cost estimates could not
be corrected properly .and the prodllct overran the sche-
dule.

References --__

[l] F.Terry Baker, Structured Proqrammlng in a
Production Progrannnlng Environment, IEEE
Transaction on Software Enqlneerlnq, June lY75.

[2] P.P. Heymans r3t .a.!, “Concurrent control of
lnteractlnq accelerators wLth partrcle beams of
varyLnq format and kLnd,’ presented at the EPS
Europhysrcs c’onference on Computer in Accelerator
Design and Operation, Berlin, West--Germany, 1983.

[3] F. Perrlollat, et al, “The Main’Operator Console of
the PS Accelerator Complex, ' presented at the
Particle Accelerator Conference, Vancouver, M&Y
13-16, 19lJS.

[4] B. Carpenter et al, “System Software for the CERN
Proton Synchrotron Control System,” CERN 84-16, 20
December, 13114.

[5] G.P. Benincasa et al, “Structured DesLgn Benefits
to a Process Control Software Prolect,” presented
at the ACM Sigminl Symposium on Small Systems, New
York, August 2-3, 1978.

[6] G.P. Benrncasa et al, “Design tioals and Application
Software Structure for the CERN 28 GeV Accelerator
Complex, ” presented at the 2nd IFAC/lFIP Symposium
on Software tor Computer Control, Prague, 1979.

[71 R. Callllau, “Program Structure Dlaqrams,”
PS/CO Cookbook, 23 November, 1976.

[H] B.W. Boehm, “Software Engineering Economics, ’
Erentlce Hall Inc., Eaglewood Clltfs, New Jersey,
USA, 1981.

