© 1985 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of thiswork in other works must be obtained from the |EEE.

IEEE Transactions on Nuclear Science, Vol. NS-32, No. 5, October 1985

2029

ENGINEERING A LARGE APPLICATION SOFTWARE PROJECT:
THE CONTROLS OF THE CERN PS ACCELERATOR COMPLEX

G.P. Benincasa, A. Daneels, P.{Heymans, Ch. Serre
CERN, 1211 Geneva 23, Switzerland

Abstract

The CERN PS accelerator complex has been pro-
gressively converted to full computer controls without
interrupting 1ts full-time operation (more than 6000
hours per year with on average not more than 1% of the
total down-time due to controls). The application soft-
ware amounts to 120 man-years and 450'000 instructions:
1t compares with other large software projects, also
outside the accelerator world: e.g. Skylab's ground
support software.' This paper outlines the application
software structure which takes 1nto account techmnical
requirements and constraints (resulting from the compl-
exity of the process and 1ts operation) and economical
and managerial ones. It presents the engineering and
management techniques used to promote 1mplementation,
testing and commissioning within budget, manpower and
time constraints and concludes with experience gained.

Introduction

The PS accelerator complex comprises 2 linear
accelerators, a 4 ring synchrotron booster (PSB}, a
proton synchrotron (P35}, an antiproton accumulator (AA)
and various beam transfer lines. It provides various
high-energy physics experiments and other accelerators
on the site with beams of different particles in puises
of 1.2 sec. The beam characteristics are modified from
one pulse to the other ("pulse-to-pulse modulation”) in
a repeated sequence called "supercycle” which 1s chang-
ed daily, if not hourly, by the operators. There may be
up to 24 beams of 8 different types 1n a supercycle.
Any beam of the supercycle 1n any accelerator is oper-
ated concurrently and in a similar fashion from any of
7 identical general purpose consoles in the main cont-
rol room.? Similar consoles, of reduced format, are lo-
cated 1n remote areas for local experiments. The effort
invested 1n the controls amounts to 200 man-years: 60
tor hardware interfacing, 10 for conscles, 10 for
system software and 120 1n application software. The
hardware budget was 14 MSfr. (in 1976 money).

The new controls is based on a network of 20
minicomputers and 100 microcomputers interfaced to the
process hardware through serial CAMAC. The minlis are
Norsk Data machines with a multi-program operating sys-
tem SINTRAN III. There are three categories: the conso-
le driving computers, one per conscle; front-end comp-
uters, one per accelerator; central activity computers
for beam sequencing and synchronization, message hand-
ling, etc.. The micros are TMS9900 located 1n CAMAC
in CAMAC crates as auxiliary crate controllers. They
execute hard real-time activities: pulse-to-pulse mod-
ulation and local data buffering. Programming languages
are: ASM for the micros; the manufacturer provided int-
ermediate level language NPL and the home-made P+, an
extension of PASCAL, for the minis; and the interpreter
Nodal for tests, experiments and not time-cricital
applications.*

Application Software

Definition: System software embraces operating
systems, network software, programming languages, etc.
Application software covers all aspects of process
controls ranging from operator lnteraction and displays
to process and equipment control algorithms and data
processing.

Requirements: The
primarily with performance:

requirements deal
cycle, pulse-to-

process
1.2sec

-pulse modulation requiring 100ths of set points to be
nodified from one cycle to another within a window of
J0msec. Operators at the console, eirther in the main
control room Or in remote areas, requlre safe and
"friendly” 1nteraction with responses within 0.5sec,
comprehensive error reporting, up-to-date 1information
as to the status of the machines. In addition to selec-
ting analog and video silgnals, 1nteracting with the
alarms system, they run up to 8 different repetitaive
displays {200 refreshed data per second) from programw
selection trees. The physicist relies on the usual 95%
avallability of the beam tor his experiment: the cont-
rols availability should thus be around 99%. From the
economics point of view, the controls should have a low
production and life cycle cost: the application soft-
ware should provide a frame which is versatile, extend-
able and maintainable for future expansion and hew

applications.
Constraints: First, Lt was imposed to use SPS
developments. A pilot project was set up 1in 1977 to

evaluate the performance of the SPS controls in the PS5
specific environment.3 It was found too slow for the
fast cycling PS. The same brand of computers, the same
network system and Nodal could be used, but the SPS
operating system was not adequate and the application
software needed redesigning. Next, the conversion had
to be completed without interrupting the full-time
operation of the accelerator complex, and preserving
its 95% availability. The project suffered from
personnel shortage, as permanent statf was drained by
higher priority accelerator and physics projects. One
had to fall back upon Summer and graduate students,
fellows, operators, temporary programmers. They had a
high turnover, as thelr contracts ran from a few months
to 2 years. Around 90 people of all types took part in
the application programming !

Application Morphology and Ancilliary Tools

The application software 1s structured 1in
hierarchical layers of modules. Starting from the
process hardware, the layers are defined as follows:®

- RT . Real-time Tasks, servicing real-time events,

- IM Interface Modules, hiding the protocels of the
CAMAC hardware modules,

- EM Equipment Modules, hiding the details for
controlling the equipment,

- CVM Composite Variable Modules which handle beam
physics parameters.

- PM Process controls Modules,

- OM Operator's interaction Modules, dialoging with

the operator.

The RT run 1n the micros, IM, EM, CVM and PM 1n the
front-end minis; OM in the Console computers.

Except for the low level RT, all modules are
passive and run under supervision of managerial tasks
whose collection 1s called the skeleton. Further, there
are general facilities for operation (knobs, analog and
video slgnal observation, trees to call programs, al-
arms, etc.) and hardware controls (beam synchronizat-
ion, pulse-to-pulse modulation, timing and power supply
controls, etc.). They are “general" because they apply
to all accelerators. Their degree of generality depends
on the standardization which 1s achieved for the oper-
ation, and the controls protocol of devices. The bulk
of the software involves applications which are
specific to every accelerator. For cost effectiveness
they should have a standard format, and production
tools (software templates, editors, etc.) have been
developed as part of the application software project

0018-9499/85/1000-2029$01.00© 1985 1IEEE

2030

Finally, the project size and constraints required app-
ropriate management tools for planning and progress
monLtoring. ’

Engineering Technigues

Participative desiqn means that “customers”
(operators, machine physicists), “suppliers* (hardware,
console and computer specralists) and all of the perm-
anent application statf took part 1n the design. This
was achieved by a proper organization of the software
team and the deslgn process.

structured, top-down design was enforced by
the morphology of the applicatinon software which lends
itself naturally to the use of lower level modules
(cvM, EM, IM) and by the convention of using program
structure diagrams as design tool,? or P+ as design
language. The design resulted in a formal document re-
viewed with customers and suppliers, and their agree-
ment was obtained before starting the programming.

Structured coding was quite automatic in case
of P+; for other lanquages one attempted to ban non-
structured statements (e.g. "GO-TO").

A _prototype was developed to evaluate early
in the implementation cycle the performance of the con-
trol system's most critical functions: i.e. those per-
formed by the skeleton and some general facilities.

Management Technigues

‘ The project was implemented by a medium size
team averaging 20 people with a high turnover. Most of
the 90 participants were not familiar with accelerator
controls and needed tralning for at least 3 months be-
tore becoming productive. The team was therefore org-
anized 50 as to keep tight control over its activities.

The structure of the Application Software
Group reflects the structure of the application soft-
ware itself. To stimulate motivation, the layers of
modules were grouped 1into independent packages and
assigned to teams as individual projects. The teams
were thus fairly autonomous. There were 3 teams each
headed by a team leader with many years of experience
1n controls:

- the Equipment Controls team concentrated on low level
controls: EMs, IMs and RTs for pulse-to-pulse modulat-
ion and data buffering.

-~ the Process Controls team covered OMs, PMs, CVMs.

- the General Facilities teaw had the responsibility of
the beam sequencing system, the trees, etc.

During the design phase these teams were kept
small so as to be efficient study teams. They Lncluded
the more junior engineers of the permanent staff. When
1t came to implementation, they evolved to programming
teams by hiring additional programmers.

Participative design and implementation: the
application software project was conducted collectively
by the project leader and the team leaders: they formed
the “layout team". From the user requirements and spe-
cification, the project leader made an initial design
and submitted it to the layout team. Together with
users -and suppliers, the layout teams analysed the
requirements, refined the structure, defined inter-
module interfaces, documentation standards, and dis-
cussed priorities and implementation strategles. It co-
ordinated the activity of study and programming teams,
and ensured cross flow of information between them. The
study teams each designed a software layer in detail,
proposed interfaces, identified and designed the var-
ious applications for which they also defined programm-
ing standards that were enforced by templates. Results
and problems were discussed with all members of the
study and layout team. The programming teams were
responsible for the implementation of each module.

Interdependence with other controls project

teams: the Application Software group had connections

with other teams respectively 1involved 1n operational
aspects, system software, consoles, interfaces and pro-
cess equipment. The Operational Aspects teanm,machlne
engineers and operators, specified the operational req-
uilrements: the general purpose character of the consol-
es and their components. This was Lnput for the Console
team to construct the console hardware and software.
They also defined the pulse-to-pulse modulation, oper-
ational accelerator subsets, the various control funct-
ions and the trees to call them. An application soft-
ware engineer participated to evaluate the feasibility
and cost of some requests. The General Facilities team
then designed the beam sequencing system and the
trees. The list of all control functions, and the def-
inition of the console was input for the Process Cont-
rols team to design the PMs and OMs. Meanwhile, the
CAMAC Intertace team defined standard control protocols
and designed and built prototypes of CAMAC modules not
commercially available. The Equipment specialists adap-
ted the equipment specific interfaces to CAMAC stand-
ards. This allowed the Equipment Controls team to
design all low level software: EM, IM and RTs.

Planning and Progress monitoring: used a data
base containing the list of all software modules, and
programs to compute their progress. With the old cont-
rol system's experience, the pilot project, cost estim-
ation techniques,8 every module was estimated in man-
months depending on complexity, real-time requirements,
language, etc. They were grouped in packages of more or
less equal load and distributed among the programming
teams. These packages were further distributed between
the programmers taking into account their preference
for individual or team work, experience, length of con-
tract, vertical or horizontal development. "“Vertical"
is when a programmer produces an entire suite of modul-
es from the OM to the RT; “"horizontal* is when he prod-
uces modules of one type only (e.g. EMs). The programm-
er's activities were planned according to schedules and
priorities defined with the users. Milestones were de-
fined in the implementation of every module and estim-
ated as percentage of the total etfort:

- design system engineering and detailed design, 40%,

- coding and unit test : 20%

- testing: simulation test on a special purpose
computer, 10%; on-line tests without beam production,
10%; and finally, with beam, 10%.

- documentation: supposedly done all along the imple-
mentation, with a 10% provision for a flnal update
after commissioning.

The progress was monitored every month. Team
leader and programmer discussed the status of every
module in terms of milestones that had been reached and
adherence to schedule. This data was entered into the
management data base, and the layout team discussed the
overall status of the project, the progress and
production efficiency. Changes of ilmplementation strat-
egy were decided to accomodate changes of priorities,
schedules or personnel, and integration tests forecast-
ed. Requests for addition or modifications to modules
under development were closely evaluated. The technical
impact, cost and drawback on the schedule was examined
before the request was entered in the planning.

The Design and Implementation History

The project was implemented in 3 main phases:

Overall design: was performed by the layout
team from Spring 1978 until end 1978 and took around $
man-years. [t involved: survey of the various processes
and equipment: analysis and synthesis of user require-
ments; definition of skeleton, general facilities and
production tools; definition of management style and
tools.

Detailed design and prototyping: all skeleton
modules, first priority general facilities and devel-
lopment tools were designed into details by the study

teams and a prototype constructed. This 10 man-years
1ab ran from early 1979 until early 1980, Prototype
tests started 1o October 1979, The skeleton, general
tacilikies and an entire vertical sulte ¢f application
modules, were tested on spare off-llne power supplies;
first in non pulse-to-pulse modulation mode, next 1in
pulse-to-pulse modulation with simulated beam cycles.

laplementation in slices: the PSE controls
was converted first together with all AA low-level
software and some general facilities. This was a major
package of 40 man-years: 3% for P3B and 5 tor AA. The
PSB iz a small accelerator, but sufficiently signific-
ant for the controls to cover all aspects. It was a new
machine at that time and almost ftully computer-contr-
olled by the old system. The application group had
sufflcient expertise of this machine, sSo as to coacen-
trate more on the novel control software aspects,
rather than on the intricacies of the machine 1tselt.
This slice took from mid-1979% to end-1980. Next follow-
ed the PS5, with some follow-up of the previous slice
and performance improvement. It ran from beginning 1981
to end-1982 and took 36 man-years. The 3rd slice, the
PS-Ejection and AA high-level application, went from
early 1983 to mid-1984, and took 22 man-years, 1nclud-
1ng some follow-up of both previous slices. The last
slice was terminated in February 1985 when the PS was
started with 1ts RF under computer control, at the cost
of another 7 man-years.

This paper emphasizes the spirit which prevai-
led throughout fthe project: standardization, structur-
ing, modularization and management. These features were
novel at CERN for acclerator controls. It changed the
traditional work style and had to be introduced against
prevailing scepticism. It 1s now generally agreed that
engineering and management are just as essential for
large software projects as for large hardware ones.

Standardization of operational procedures,
equipment controls protocols and hardware interfaces,
result 1n single data driven progrvams, applicable to
any accelerator. It is further enhanced by the struct-
uring 1lnto skeleton and specific applications, and use
of appropriate production tools. It reduces the cost of
implementation and also of maintenance through improved
reliability. Modularization saves on production by cut-
ting down the overall project into small ones and eases
management. This is best illustrated by the later pha-
ses of the project where a small team was able to put
all of the PS-RF on-line in less than a year. Except
tor the PSB, all subsequent slices were converted to
full computer control in a more stepwise fashion. Stan-
dardization and modularization had reached a point
where in shutdowns of a few days only, significant
packages could be installed, tested and commissioned.

Because of the hierarchical and modular struc-
ture, the implementation could be vertical or horizont-
al. Vertical was preferred on the basis of people’'s mo-
tivation, clearer definition of responsibilities and
better quality programs. However, as modules are prog-
rammed in sequence, the elapsed delivery time 1s rather
long. Horizontal implementation implies parallel devel-
opment of all modules belonging to a system: the deliv-
ery time is short but responsibilities are diluted lea-
ding to maintenance problems. Unfortunately, the tight
schedule and the short stay of temporary programmers,
imposed often horizontal implementation.

Management was another issue. A strict implem-
entation plan was defined, and no wmodifications to the
originally agreed design were accepted during the imp-
lementation. They were executed after completion of the
original plan so as not to disorientate programmers.
Progress monitoring tools were essential to assess

2031

progress, forecast the evolution, plan tests and comm-
1ssioning, and to give confidence 1n meeting deadlines.

The problems relat; to the high personnel
turnover and the tight schedule. Follow-up and mainten-
ance were difficult when a programmer left the organiz-
ation. It was difficult to motivate someone else to ta-
ke over software, without having him redesigning 1t
all. Application software 135 last in the lmplementation
sequence of a controls system and 1s continuously
squeezed between lagging deliveries from other parties
and hard operational deadlines. This puts the emphasis
on quick delivery, rather than on hlgh quality softwa-
re, and proper documentation. Test time in early slices
was insufficient and requested round the clock work.

Participative design was introduced to enhance
professicnal stimulation, motivation and commitment of
participants, including the users. It left scope for
creativity of the programmers who later were involved
in dull coding, bhut appeared to be less satistactory
than expected. Design of intermediate layers made them
loose oversight of the entire structure and was found
too abstract. Vertical implementation was preferred.
The rigidity of the skeleton was not considered an
obstacle.

Technical problems resulted from insufficient
design of data structures. The design concentrated on
the functional 1logic and the corresponding data was
derived from it more or less ad hoc. Similarly the sys-
tem was designed for steady state operation of the ace-
elerators and controls, overlooking transitory states
such as start-up and shutdown. The depth nf design was
never clearly defined: if the design was not suffic-
jently detailed, the initial cost estimates coulid not
be corrected properly and the product averran the sche-
dule.

References
{1] F.Terry Baker, Structured Programming in a
Production Programming Environment, IEEE

Transaction on Software Engineering, June 1975.

[2] P.P. Heymans et al, "Concurrent control of
interacting accelerators with particle beams of
varylng format and kind," presented at the EPS
Furophysics Conference on Computer in Accelerator
Design and Operation, Berlin, West-Germany, 1983.

[3]) F. Perriollat, et al, "The Main'Operator Console of
the P35 Accelerator Complex,“ presented at the
Particle Accelerator Conference, Vancouver, May
13-16, 1985.

[4] B. Carpenter et al, "System Software for the CERN

Proton Synchrotron Control System,” CERN 84-16, 20
December, 1944,

[5] G.P. Benincasa et al, “Structured Design Benefits
to a DProcess Control Software Project," presented
at the ACM Sigmini Symposium on Small Systems, New
York, August 2-3, 1978.

(6] G.P. Benincasa et al, "Design Goals and Application
Software Structure for the CERN 28 GeV Accelerator
Complex," presented at the 2nd IFAC/IFIP Symposium
on Software for Computer Control, Prague, 1979.

[7] R. Caill:iau, “Program Structure Diagrams, "
PS/CO Cookbook, 23 November, 1976.
[8] B.W. Boehm, ‘Software Engineering Economics,"

Prentice Hall Inc., Eaglewood Clitfs, New Jersey
USA, 1981.

