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Summary 

The position noise in the LAMPF H- beam has been 
studied through examinatiop of the autocorrelation and 
spectral density Eunctions Ear position motion. The 
LAMPF H- beam is a pulsed 800-MeV beam, and the 
position of each beam pulse was treated as a discrete 
value. Also investigated was the reduction in 
position noise that can be attaLned with an algorithm 
that predicts beam position from the measured 
positfons of previous beam pulses. The basis for this 
predictive algorithm is the calculation of the optimal 
linear estimator (see the appendix). We conclude that 
the majority of low-frequency noise occurs within the 
lo- to 15-Hz frequency range, and that, with a simple, 
2-pulse predictive correction system, one could 
improve the noise in this frequency region by as much 
as a factor of 15. 

Introduction to Noise Study 

The noise study was done using wire-chamber beam 
profile data taken, at 120 Hz, in the External Proton 
Beam line by Experiment 792, Search for Parity 
Violation in Polarized p-p scattering at 800 MeV. 
Beam periodicity was 1/120th of a second. Beam motion 
is believed to result primarily from low-frequency 
mechanical oscillations in the linac drift tubes. 
Wire-chamber profiles were analyzed to determine the 
position of discrete beam macropulses, and data 
samples taken over a one week period were examined to 
determine how the noise changes with time. 

Ln addition to the lO- to 15-Hz noise, there 
exists a significant amount of 60-Hz position noise. 
We also found a B-function component of the 
autocorrelation function which arises from an 
undetermined combinatFon of measurement error and 
high-frequency position noise. An optimal reduction 
of the overall noise will require minimizing the 60-HZ 
motion and &function component by independent means. 

Autocorrelation Plots 

An example of an autocorrelation spectrum 

R(T) = I x(t)x(t+T)dt 

for one of the data samples (Run 4442) is shown in 
Fig, 1. The spectrum covers the range of T = L/L20 s 
to T = 50/120 S. The autocorrelation integral has 
been approximated by numerLca1 averaging over a 5000 
pulse (-1 min) time span. In calculatLng the Fig. 1 
spectrum, 60-Hz position motion was eliminated by 
averaging the position of consecutive beam pulses. 
This averaging provides a smoothed set of data in 
which the slower frequency components of beam motion 
can be more easily resolved. 

All R(T) values in these and subsequent plots 
have been normalized to R(0). As can be seen in 
Fig. 1, the R(T) curve does not extrapolate to a value 
of 1 at r = 0, indicating the presence of a 
&function-type high-frequency noise that has its 
source in either real position motion or detector 
measurement error. Whatever the source, such a 
high-frequency component cannot be reduced by means of 
predictive correction. 

*Work supported by U.S. Dept. of Energy. 
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Fig. 1. Autocorrelation plot for Run 4442. Plot is 
calculated from position data that has been smoothed 
to eliminate the contributions of 60-Hz noise. 

Autocorrelation plots for beam motion at two 
different times of accelerator operation (indicated by 
different run numbers) are shown in Fig. 2. The range 
of the plots has been expanded to T = 500/120 s so 
that the envelope of the autocorrelation function can 
be easily discerned. The plots show the presence of a 
damped component as indicated by the shrinking of 
envelope amplitude with increasing T. They also show 
the presence of multiple frequencies as indicated by 
the presence of beats. The change in envelope shape 
from sample to sample is evidence of changes in both 
the damping and in the frequencies of the noise 
contributants. 

Spectral-Density Plots 

Details showing typical low-frequency noise 
components in position motion are shown in the 
spectral-density function (SDF) plot of Run 4442, 
shown in Fig. 3. The SDF plot shows a large peak at 
-10.4 Hz, with several smaller peaks at higher 
frequencies in the lo- to 15 Hz frequency range. 
Other data samples were analyzed also, and the 
frequencies for the smaller peaks varied from one run 
to another. 

Based on the general form of the spectral density 
functions, fits to the autocorrelation functions of 
each run examined were made using a fit function of 
the form: 

Rfit 
= Ale- cos(2nfLt) + A2’0” (2*f2t) + A3cos(2nf3t) 

+A4cos(2nf4t) . 

The fits were made over a range of pulse spacings from 
1 to 150, and starting values for amplitudes and 
frequencies used in the fits were estimated from the 
spectral density plots. Damping for the fits varLes 
from a value of 0.1/s to a value of 0.3/s. The fit 
values for Run 4442 are presented in Table I. 
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Fig. 2. Autocorrelation-spectrum envelopes 
for data samples taken at different times, 
Run 4442 and Run 4498. 
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Fig. 3. Spectral-density function in the lo- to 15-Hz 
range for Run 4442. 

Predictive Algorithm 

A predictive algorithm was derived based on a 
formalism calculating the optimal linear estimator. 
Details of the formalism are presented in the 
appendix. The predictive algorithm can use any number 
N of previous beam positions to calculate its 
prediction. It requires only that the auto:orrelation 
function up to R(N) be known and that an N x N matrix 
be inverted. From the formalism, a theoretical noise 
reduction (TNR) also can be calculated. 

We tested the predictive algorithm on three 
representative samples of beam motion using 
predictions based on the 2, 5, and 20 previous 
positions. As was the case in calculating the noise 

spectrum, 6O-Hz noise was not treated and its effects 
were elimtnated through smoothing of consecutive pulse 
positions. The success of the predictive algorithm 
for Run 4442 is shown in Fig. 4. Actual noise 
reductions (.ANR) 

ANR = o (raw position motion) 
a (corrected position motion) 

were calculated for alL of the trial cases, and they 
are presented in Table II. Also presented in Table II 
are the theoretical noise-reduction values for each 
case as calculated from the formalism. The 
theoretical noise reduction can be regarded as an 
upper limit to possible noise improvement, and the 
actual noise reduction is smaller, as expected, 
because of the &-function-type noise described 
earlier. Should this 6-function-type noise be 
dominated by measurement error rather than actual 
position motion, one can expect to improve the .4NR 
through the development of improved position 
detectors. 

The results presented in Table 11 show that a 
prediction based the positions of only the 2 most 
recent beam pulses does nearly as well as predictions 
based on 20 previous positions: the respective noise 
reductions in the lo- to 15-Hz range are 14 and 18 for 
the two algorithms. Also, the 2-pulse predictive 
coefficients for all the sample cases are the same; 
this suggests that a universal 2-pulse algorithm using 
these coefficients can be implemented. Such an 
universal algorithm makes possible the reduction of 
position noise without the need for a real-time 
analysis of past positions. The fact that a 2-pulse 
universal algorithm can effect nearly-maximal noise 
reduction is consistent with the exact solution for 
predictive coefficients in the case of a pure 
sinusoidal autocorrelation function without damping 
(see the appendix). 

TABLE I 

FIT VALUES TO AUTOCORRELATION FUNCTION OF SAMPLED 
RUN 4442. 

RUN I - - A(I) v f(I) 

4442 1 0.571 0.313 10.43 
2 0.003 11.43 
3 0.080 12.06 
4 0.004 13.65 
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Fig. 4. Comparison of raw position data (60 Hz 
removed) with algorithm predictions for Run 4442. 
Predicted beam positions calculated from 2-pulse 
algorithm. 
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TABLE II 

NOISE REDUCTION LIMITS FOR PKEDICTIVE ALGORITHMS. 

RUN PULSES L TNR' ANRB -- - - 

4132 2 14.9 5.9 
5 14.9 4.6 
20 18.5 5.9 

4442 2 13.9 3.9 
5 14.1 4.0 
20 15.4 4.4 

4582 2 14.1 3.3 
5 14.7 3.0 
20 19.2 3.3 

iNumber of previous positions used in algorithm 
to make prediction. 

2Theoretical noise reduction. This is upper limit 
to noise reduction that can be attained in the 
lo- to 15-Hz region. 

3Actual noise reduction; attained over full 
frequency range. 

Appendix 

Optimal Linear Estimator 

Consider a discrete random process yk defined on 
the positive and negative integers. We assume that 
the process is stationary: 

E(ykyI1) = R(k-8) 

where E denotes the expectation value and R is called 
the autocorrelation function. We assume that yk is 
ergodic: that ensemble averages are equal to time 
averages. We assume E(yk) = 0. 

Given the value of y up to k-l we wish to predict 
yk as a linear function of m previous va1Ue.s: yk-1, 
Yk-2' '** Yk-m' 

m 
P -k - - 1 c&-& - 

&:I 
For fixed m, we define the minimum-variance set of 
prediction coefficients G 9, such that 

E ((y,-p,~)*) = minimum. 

Then as m + -, p:, will be the minimum variance 
estimator of yk given the past history of the process. 

The equations for the Gns are 

R(s) =kfGnR(s-n) 

Gn =s~R(s)Ms,n 
where MS ” is the symmetric matrix that is the inverse 

Of Rs n : R(s-n): 
m ' 
7 R(s-n)Mn q = 6,,q 

nt, 
16s <m, l<q<m . > 

The theoretical noise reduction v is then 

Application to Examples 
i 

Examples of cases that can be easily worked out 
are 

(1) R(s) = a -IsI ; exponential decay. 

The matrix MS n is nonzero along the main 
diagonal and the t;o adjacent diagonals. It is zero 
everywhere else. It can be shown 

Gl =a , and GI1 = 0 , otherwise. 

Hence, V -2 = ISa2 . 

In the special case when the damping is large 

a=0 , and, hence, 

R(s) = 6s,o , and 

"-2 = 1 . 

So noise that has a &-function autocorrelation cannot 
be reduced by a predictive correction. 

(2) R(s) = cos(2nfts); undamped sine wave, f is the 
frequency and t is the pulse spacing. 

For m = 2, 

M = -;;~~~~~~~~-~~os~2~ft) -‘oy”) , 
Gl = 2cos(2aft) 

G2 = -1 , and 

v-2 = 0 . 

For m > '2, the matrix R(s-n) is singular. 
Because the autocorrelation function for the processes 
being considered (LAMPF beam motion) is to a good 
approximation undamped, it is to be expected that the 
m = 2 solution given above will be a good 
approximation to the optimal estimator. The damping 
per pulse interval is -1 - (O-2)/(120) = 0.998. 

It Is interesting to calculate the response of 
E(lYk-Pkl)/E(bkl) as a function of frequency f when 
yk is a sine wave at frequency f, 

GL = 2cos(2n(10.4)(1/120)] = 1.71 , and 

G2 = -I . 

Although the response at 10.4 Hz is zero, the 60-Hz 
component of the signal will be enhanced by a factor 
of 3.70. This is the price of suppressing the lo- to 
15-Hz noise. 
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