REFINEMENT PROCEDURES OF BEAM POSITION MEASUREMENT IN THE TRISTAN ACCUMULATION RING

> M. Tejima, H. Ishii, T. Shintake, J. Kishiro, A. Ogata, T. Tuiri and Y. Mizurachi

National Laboratory for High Energy Physics (KEK)
Oho-machj, Tsukuba-gun, Ibaraki-ken, 305 JAPAN

Summary

High precision of about 0.1 am is required in the beam position measurement of TRISTAN MR (main ring) which is now under construction. In this respect, position measurement in the TRISTAN AR (accumulation ring) is reviewed. We found that the statistical study of the accumulated measurenent data gives very useful information on the performance of the monitor system. For example, repeated COD measurements during a beam storage showed not only reproducibility of the position measurement (0.05 mm) in the beam intensity sange of factor 50 but also pointed out troubles caused by poor contact in coaxial switches. Moreover, it suggested the criterion to abandon erroneuus data. Programs for such check has been prepared and has improved the efficiency of COD correction. Improvenents have also been made in the calibration and in the mechanical setting of the monitor chambers.

Introduction

The operation of TRISTAN accumulation ring (AR) started at KEK Irom November 1983 (1) and the beam position monitor system has worked with good performance. During these two years, we have accumulated experiences wich are useful for the design and the construction of the TRISTAN main ring (MR).

Position monitors in AR $(2,3)$

We have 83 nonitor pickups for arbit measurement in $A R$, each one sitting at the side of a Q-magnet. A position electronics systen is set in each of four local control buildings on the $A R$ ring. Each one covers one fourth of monitors (20-22). A monitor chamber is just a part of an aluminum bean duct where four pickup eleccrodes are welded on to the wall as shown in Fig 1. Ti We use super heterodye detection schome and pick up harmonics of beam revolution.

Mapping calibration
we set the signal source at (X, Y) in a monitor chamber and measure the output voltages A, B, C, D, and then get the normalizations, $N x=(A+C-B-D) /(A+B+C+D)$ and $N y=(A+B-C-D) /(A+B+C+D)$. In this way, we get the relation between signal roordinates ($N x, N y$) and space coordinates (X, Y) for each monitor. We can practically

Fig 1 Position monitor chamber in the bending section

Fig 2 Setup tor napping calibration
represent it by the following third order polynominats, $X=\Sigma P x(i, j) * N x^{i} * N y^{j}, \quad Y=\Sigma P_{y}(i, j) * N x^{i} * N y^{j}$
with $0 \leq i, j \leq 3,0 \leq i+j \leq 3$. [n these expressions, $P x(0,0)$ and $P y(0,0)$ gives the deviation of the signal center from the geometrical one. Sumetimes, $P x(1,0)$ and Py (0, D) are felerred $t 0$ as monilor k-values. Doininant teras in Eq. (1) are those of $P x(i=o d d, j=e v e n)$ and Py (i=even, $j=0 d d)$, and other terms are small due to the symmetry of the pickup configuration. Fig. 2 shows the setup of the calibration with a coaxial antenna exciting the field in the monitor chamber. Owing to the computer-controlled antenna positioning and data taking, the calibration of one monitor takes only about ten minutes. Fig 3 shows the contour mapping of the monitor coordinates.

Fig 3 Contour mapping of position monitors

Fig 4 Measuring robot and the course of touch sensor movement

Setting measuregens

we measured the geometrical setting of monitor chambers with measuring robot and a location jig. The robot is set on the standard base on the top of a Q magnet and the jig, on the other hand, is set on the monitor chamber. The robot arm follows the given course of movement as shown in Fig 4 . It starts from the callibsated hone positions and moves in a straigh: line until the head sensor touches the jig. Since the jig has the defined shape and setting to the monitor chamber we know the location of the nonitor chamber from the four distance of approach, x 's and $y^{\prime \prime} s$. The accuracy of the geometrical measurement is about 100 microns. The overall beam position accuracy is about 200 microns.

Fig 5 Display of the closed orbit in AR ring

Closed orbis neasurement

The measurement of the closed orbit in the four local control proceeds in paralle! and takes about 12 seconds! Fig 5 is the display of the orbit on the graphic screen at the control console. We also prepared the display of the voltage output of each monitor electrode as in Fig 6. We consult this display Whenever beam orbit looks abnormal because it is very useful to find bad elements in the system.

Fig 6 Display of individual electrode outputs

Several studies

Reproducibility

we reppaled closed orbit measurements during a beam storage to check the reproducibility of monitors. Figure 7 a shows the history of position data of a sample monitor and the beam current in two hours. The statistics of the position data in this measurement is sumarized in Tablel. Reproducibility is generally good but five monitors had standard deviation larger than 0.1 mo. It was pushed to a large value, in each case, by a singular position data which appeared once in 110 measurements. We got it when one electrode had a very small output as compared with the other three. It is an abnormal data because one electrode cannot have a small output independently. Such sinall output was possibly caused by an accidental poor contact at the coaxial switch. We found that we can reduce false data as above by eliminating the data when
$V_{m i n}>0.8 * V 2$ and $V 2 \geqslant 0.8 * V \mathrm{Vax}$ Where Vmin $\leq V 2 \leq \sqrt{ } 3 \leq V \operatorname{lax}$ and these are outputs of four electrodes. Actually, Eq (2) is satisfied by the beam ithin the area of $20 \mathrm{~mm} \times 12 \mathrm{~mm}$ in the central region of the chamber. In the later experiment, we met the cases where Eq (2) was not effective because we had plural number of abnormally small outpul. Hence, we adopted one more criterion; Vmax and $\mathrm{v}_{\mathrm{m}} \mathrm{in}$ should appear in a diagonal couple of electrodes. This check works well if used together with Eq (2).

Table 1 Distribution of standard deviation in the repeated measurements
(a) No data check
(b) Check by Eq (2)
$\mathrm{Xrms} / \mathrm{Y} \mathrm{rms}<0.05<0.1>0.1<0.05<0.1>0.1$ number of PM $67 / 63 \quad 7 / 11 \quad 5 / 5 \quad 70 / 67 \quad 8 / 11 \quad 1 / 1$

Fig 7 Pasition montor data during beam storage

```
(a) position (0.5 mm range)
and beam curfent \((0-40 \mathrm{~mA})\)
(b) electrode outputs ( \(0-10 \mathrm{~V}\) )
```


Beam intensity dependence

Since the beam current decreased from 40 mA to 0.1 mA in the above veasurement, Fig 7 a shows the performance of electronics at various beam curfent, too. Fig 7 b shows the output voltages of individual electrodes in the same measurements. Step change in the uutput means the switching of the programmable attenuator. The super-beterodyne circuit has linearity range of about 40 dB and the overall linearity range can be further extended by an external programmable attenuator by 40 dB with 10 d t step. However, the full lineasity range of the detector circuit is not used because we nust adapt the output level ta the full range of 11 bit $A D C$ to get enough precision in the norma!ization. When the programmable attenuator is set a: O dE, offset of position data is recognized at several monitors. We suspect that this is due to the mismatching at the circuit input and at the pickup electrodes. The effect of mismatching will be largest when four electrodes are unbalanced and there is no attenuation. Therefore, it seems to be adequate to keep the attenuation to some finite level.

Estimation of the setting of unneasurod monitors

Ceometrical setting error has not been measured for 20 monitar chambers out of 83 because the measuring rabot was not applicable due either to irregular chamber shape or to restriction of space in the tunnel. Hence, reliable position data is not available from these monitors as was demonstrated by the following axperjaent: orbit correction at the 63 measured monitors was made in two ways, first by using the data of measured monitors only and next by using both measured and unmeasured ones. The first case gave the better result as is shown in lable 2 . We proposed a beam experiment in place of the geametrical measurement:, to estimate the unmeasured setting erfors from the position data of the calibrated monitors. (5)

Table 2 Orbil distortion at measured monitors

| correction with | $X r m s$ | Y rms | $X p-p$ | $Y p-p$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| neasuredmonitors | 0.49 | 0.19 | 2.32 | 0.85 |
| allmonitors | 0.65 | 0.27 | 2.88 | 1.04 |

Improvements for MR position monitor

The coefficients $P_{x}(1,0)$ and $P y(0,1)$ which were obtained in the calibration measurenent did not fully agree with the analytical calculation in the case of a circular bear duct. In the measurement, the stripped end of the coaxial antenna was set at the position of pickup electrode (position 1 in Fig 8A). The field distribution in this configuration was obtained by "TWA program" $(6,7)$ based on boundary element method (BEM). It showed that the position of the antenna was not adequate because the field is disturbed at the antenna end and, thereforte, the pickups did not see such transverse electromagnetic (TEM) field as the beam with light velocity produces. Instead, TEM pattern appears at some distance away from the antenna end (position 2). The measurement agrees with BEM calculation when the antenna position is set so that the pickups see the TEM field. Sensitivity calibration of MR monitors is now proceeding with the improved antenna configuration, but the revised measurement is no longer possible for $A R$ monitors. However, orbit correction of $A R$ is possible even with small ertor in the sensitivity data because the coordinate ofigin was correctly obtained in the previous calibration. Therefore, a practical solution will be to replace the coefficients $\operatorname{Px}(1,0)$ and Py (0, 1) in Eq (1) with the calculated ones.

Fig 8 Field distribution in the mapping measurement

References

(1) G. Horikoshi, Construction and Operation of the TRISTAN Accumulation Ring" in Proc. 5 th Symp. Accelerator Science and Technolopy, Tsukuba, Japan, 1984, pp. 6-8
(2) T. Ieiri, H. Ishii, Y. Mizumachi, A. Dgata, T. Shintake and M. Tejima, "Peiformance of the Beam Position Monitors of the TRISTAN Accumulation Ring" ibid. pp. 154-156
(3) T.Ieiri, H. Ishil, Y. Mizumachi, A. Ogata, J, -L. Pellegrin and M. Tejina, "Bean Diagnostics of the TRISTAN Accumulation Ring" IEEE Trans. NS-30 (1983) 2356
(4) H. Ishimaru et al., "Construction of Vacuum System for TRISTAN Accumulation Ring* ItEE Traris. NS-30 (1983) 2906
(5) S. Kamada, K. Oide, H. Fukuma, K. Yokoya, K. Nakajima, E. Kikutani and M. Tejima, Operational results of Optics Handling and Closed Orbit Correction in the TRISTAN Accumulation Ring" contribution to this Conf. (paper L54)
(6) T. Shintake, Transient Wave Analysis Program using Wave Equation of Vector fotential contribution to 1984 Linear Accelerator Conf., Darmstadt
i7. T. Shintake, to be published

