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Introduction 

The Tevatron I project' at Fermilab depends very 
crucially on the momentum stochastic cooling to 
collect and store antiprotons produced by injecting 
protons on a target. This prolect differs from the 
sinilar and original one in CERN by the fact that it 
requires larger p-flux, that is a larger number of 
antiprotons collected per unit of time, and a larger 
final momentum density. Both of these quantities are 
about an order of magnitude larger in the Fermilab 
project. Moreover, the stochastic cooling design is 
made of several systems each with its own pick-up, 
kickers and chain of amplification. These systems 
could overlap in the frequency bandwidth as well in 
the beam reponse dynamics. It has been argued 
therefore that the performance of the momentum 
cooling could have been limited by the .signal 
suppression which one derives -when examining the 
cooling system in closed loop. 

In this paper we make an analysis of the closed 
loop system for momentum stochastic cooling. In the 
closed loop configuration the electronic feedback 
depends 30t only on the electronic component 
characteristics but also on the beam intensity and 
energy distribution. A9 tnalysis for a single system 
has already been done ' requiring basically th$ 
solution of one dispersion relation. Our results 
give the interrelation between the signals from the 
different parts of the system and their mutual 
enhancement or suppression. All this is described by 
a matrix notation. There is need now to solve a 
larger number of dispersion relations. 

Derivation of the Vlasov Equation 

Define the total beam density distribution 
'b (e,E,t) where 6 is the angular position around the 
m&n closed orbit and E is an energy difference 
variable. The conservation law requires 

J$ + div C:$,) = 0 ' (1) 

Wherp z E(i,i) and i z n(E) is the rotation frequency 
and E = z(E,t) the energy gain per unit of time. 
Split the total distribution $ = $ + $ as the s'um 
of an unperturbed distribution '@ 2: ? (6,-t) and .a 
perturbation 9 = a(etE,t). Also'; 2-E '+ E where E 
are the external cooling forces and E 'are &he force: 
created by the perturbation. P 

The cooling equation is derived from 

$ + ; Go4Jo, = 0 

There is a term Wac(;,$, which of second order 
magnitude and it will be neglected. Another term 
that is also neglected is a/ac(z $1 which represents 
the effect of cooling on the perfurbation. 

From (1) one then derives the following (Vlasov) 
equation for the perturbation + 

i?4 
at + Q.(E) $ + 2 (;&lo: = 0 

The next step is the calculation of i 
P' 

Calculation of the oerturbation Force 

(2) 

We assume the cooling device is made of N 
systems. In Fig. 1 we show a case with N = 5. 8 
dark line shows one particular system. ThisS system 
joins pick-up station Nl with kicker station t2. The 
station numbers should not be confused with the 
system number. In principle it should be possible to 
break ;ip the analysis to the smallest detail which is 
made of a system connecting one single pick-up to one 
single kicker. Indeed pick-ups (ar.d kickers) are 
distinguishable from each other because at least they 
occupy different locations around the ring. 
Nevertheless here for simplicity we shall consider a 
system as connecting one group of pick-ups to another 
group of tickers. But in our derivaton we will not 
neglect the fact that there are two or zlore groups of 
pick-ups and kickers. 

The j-th system includes N pick-ups at the 
location 0 connected to N ki&ers at the location 
ek . . The e%ension of the p c u k? k- ps and kickers is 
hege obviously neglected. The perturbation current 
in exit of the pick-up station is 

Ij(t) I e 
J 

M epj I E,t) Spj(~)fi(~)de (3) 

where S is the pick-up energy response function. 
The vol!&e applied at the kicker location ekj by the 
perturbation itself is 

(t-t') Ij(tc)dt' (4) 

where G.(t) is the transfer Green function between 
pick-up4 and kickers of the same system. We prefer6 
express quantities in the frequency domain, so that 
introducing the overall transfer impedance function 
Zj(W) 

(5) 

*Operated by Universities Research Associates, 
Inc. under contract with the Department of Energy. 

and 

Zj(w) = Aj /'N .N .R .R .' g.(w)e-iwtj 
PJ kJ kJ kJ J (6) 

where Aj is an overall linear gain, R 
P3 

the effective 
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pickup impedance, 9k. the effective kicker impedance, 
t. a delay time betwden pick-ups and kickers and g. 
ii&ludes special filter, ampiifier, p ick-up, kicke. a 
and any other items in the system ywith special 
frequency dependence. 

The total energy gan per unit of time is 

kp = e Sl (E)! 6(Rekj) Vj(t) Skj (E) (7) 
J 

where the summation is done over all the systems. 
6( L@ ,) is a delta function which expresses the fact 
that k3 e gain is applied at the kicker location and 
Skj(s) is the kicker energy response. 

For obvious reasons of convenience, in the 
following we shall make use of the expansions 

6( R ekj) = -& : eim( g 'kj' 

and 

$ = f eime ~(E,w) eiti du 

(8) 

where T (e,W) could either be the Fourier transform 
of q(t) ff one desires to investigate the stability 
of the beam or the Laplace transform. In the first 
case the perturbation is present from t q -- on, in 
the latter it appears only at t I 0 and $ I 0 for 
t-co. 

D 4 = %j - Jsj 
where 6 . = 0 for s tj and 6ss 
be writ%& simply 

= 1. Eq. (13) can also 

8=Dii (16) 

Derivation of Dispersion Relations which can be inverted to give 

The transform functions $ (e,W) are normal to 
each other with respect to botg the mode number m and 
the frequency 6J. Therefore it is possible to 
substitute (7) with (8) and (9) in-the Vlasov 
equation (2) and obtain an equation for jb, 

8 = D-l; or H 
j 

I C D. -I Bs 
s Js (17) 

Discussion - System Stability 

ii- 
% (0) 

1’(w+ m n) 
+ 

(10) 

@h -fSF j 
-;mej q+$/w) d 

i(w,msr) d’s [g c4 s”d Id m-j 

where $m(o) = 0 if the Fourier transform is taken and 

+m(o) I & 4Jrn(E’ t-o+) 

applies with the Laplace transform. Moreover 

Hj&Jj = $ e’” “‘/G (E: 0) s,j~&3n(E:, d E ’ 
(11) 

iS the Fourier or Laplace transform of the 
perturbation current 

Ij(t) I e 
s 

Hj&O)e i(rt dU. (12) 

We now (i) multiply both sides of (10) by exp(im8 1, 
(ii) sum both sides over all m's, (iii) multiply ggth 
sides by S (E) G(E), and (iv) integrate both sides 
over E. w"e obtain the following Ns dis persion 
relations (s I 1,2,...Ns) 

Hs(& = B$IJ) + ; Jsj(w) Hj(w) 
J 

where 

B,(o): -+ Sps(i))p&.)~ M”J e 
L’m e,, 

(14) 

Q + m.JdE) 

and the dispersion integrals 

’ S,,~~‘)S - 
w&-M P,l - J%.$] dE , 

m c;, t nS8’) 

It is convenient to make use of vector and matrix 
rotation. Define the vectors 

$ . (B&,...BNs) 
l (Hl,H2,...HNS) 

and the maxtrix D with elements 

To understand Eq. (17), which is here our major 
result, we propose to look at the cases of N = 1 and 
2 systems which are represented with the diazrsms of 
Fig. 2 and 3. With only one system we actually get 
from Eq. (13) 

Bl(w) 
Hi : l-Jll(w) 

B1 being the perturbation in the open loop case. If 
the loop is closed the signal is effectively reduced 
(or enhanced) as one can customary derive by 
inspecting the diagram of Fig. 2. There is only one 
signal here to worry about and the analysis is 
straight forward. But for two systems, both of them 
in closed loop, the actual signal from say pick-up 
station 1/l will depend on the perturbation not only 
at that station but also at the other one C2. In 
general for N > 1 the actual signal from one 
particular syssem will be given as a linear 
combination of all the open loop signals from all the 
systems. 

Another issue is the system stability against 
possible errors added to the transfer function. We 
want first of all to point out that for those 
frequencies such that 

Determinant D(w) = 0 (18) 
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the whole cooling device is intrinsically unstable. 
We assume here that this is not the case. To 
estimate the stability of the j-th system we can 
still solve an equation similar to (18) which is 
obtained by multiplying all the elements J 
j-th column by an error function Ecu?? An ideal 
system with no error has E = 1. In general E(w) is a 
complex function, and stability diagrams can be 
obtained by plotting the imaginary versus the real 
part of it. 

PUI 

Signal Suppression 

This is best described by the Fourier transform 
U(w) of the energy gain per turn which we can write 
as the following summation over all the systems 

where 

,-fs) cw (t; 
p,(Q) = ‘2 skjC'Jzjtw) 2:; lw) e 

j SK&) L(o) 

, 
(20) KI 

FLg. i Schrnlatlcs 0, ,i St"t.~,asti~. i‘aolq UPYLLL' 
vlth x i 5 systen,s 5 

is a complex factor which measures the 
(or the enhancement if IP 1 >l) of the 
to the total voltage fro8 the s-th 

suppression 
contribution 
system. in _ - absence of any closed loop effects obviously Y (w) = 

1 and Eq. (19) reduces to the usual formula whizh is 
used to estimate the energy gain per turn. 

A computer code (SSBS) is now available here at 
Fermilab that calculates not only the stability 
diagram of each system of a stochastic cooling 
device, but also the various suppression factors 
(20). A crucial part in these calculations is the 
inversion of the complex matrix D which also requires 
a careful analysis' of the dispersion integrals (15). 
This has been done now also for the case of multiple 
poles (the zeroes at the denominator of (15) in a 
specified energy range). 
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