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Introduction 

of stochastic cooling Several hhorough treatments 
now exist ' yhich go far beyond the original 
concepual picture' of "removing fluctuations from the 
Schott noise". The trend has been to replace this 
original statistical picture with ensemble evolution 
equations amenable to continuum treatment. High 
performance P accumulation systems, both designed and 
contemplated, attempt operation at the limits of 
system feedback gain, as dictated by instability 
thresholds and "signal suppession"[SS] degradation. 
The many admitted as well as implicit assumptions and 
approximations associated with the current models are 
most questionable near the high gain limit. 

First I will highlight a few of these aSSumptiOnS 

by pointing out inconsistancies they lead to. In 
particular, a fundamental difference between 
transverse (including "Palmer") cooling and filter 
cooling is revealed. This critique is not meant to be 
comprehensive, and thus does not predict new 
performance limitations for specific systems. Its 
point is to emphasize the need for further analysis, 
with more powerful theory. 

Finally I point out a candidate for such a 
refined approach, the llrenormalization group"[RG]. 
Instability thresholds may be viewed as phase 
stransitions (a fact pointed out, already, by 
Sacherer4). The unique success of the RG approach in 
describing behavior of systems near phase transitions 

is well known in other branches of Physics. In this 
limited format I will merely make this method 
plausible and sketch its method. The RG is 
essentially a statistical method, and my arguments in 
this note argue for a reexamination of a statistical 
approach to stochastic cooling. 

Transverse v3 Filter Cooling 

This note is concerned with filter momentum 
cooling, but it will be instructive to compare with 
the simpler dynamics of transverse cooling systems. 
For an ideal 
phase advance), b~~“~eal~!&“6Y,~ bak!a~~~nex~~kt~~2 z:E 
linear transverse PU and K sensitivity, it is easy to 
understand the phenomena of SS, and instability 
(heating, in this situation). This is because there 
is strictly no correlation between the signal 
(transverse fluctuations) and the particle 
longitudinal positions. Thus one can actually see, in 
the simulated dynamics of a few particle beam for n =O 
(global dispersion), that particle betatron phases 
readjust themselves, canceling their neighbor's 
amplitudes and giving V8(t) ~0 after a few turns. 
Theoretically this is o vious since the dynamics for N 
narticles is linear, in the sense that 

where X- (x.) i=l,N is the transverse amplitude at t 
and M is not1 (X,X') dependent (but will be (pi) 
dependent). 

*Operated by Universities Research Association, Inc. 
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Such linear behavior is equivalent to that Of 
signals on operational amplifier feedback circuits, 
which forms the paradigm for the stochastic cooling 
analysis of Mohl, et al.' I wish to contrast the 
actual behavior of filter Cooling to this. First a 
discussion of Palmer cooling is useful as an 
intermediate case. Consider the idealized situation 

Z,'nsY?lZ~' 
~0; betatron motion uneffected; and PU/K 

independent of n. Two conditions are 
important (see Fig.1): A. a small momentum spread, 

symmetrical about p. (the PU neutral plane); and 
. Up offset by np>>op from pg. 

Fig. 1. A normal and B offset Palmer feedback. 

In case A, VP(t) ("P" for Palmer) is exactly equal to 
the energy fluctuation record of the beam as a 
function of time (at PU). That is, if U +O, V (t)+O: 
configuration A has zero sensitivity t8 longi udinal ,e 
density fluctuations. In case B we have the opposite: 
as CJ +o, the signal does not diminish; V (t) is 
event ally e a record of density fluc&tions. 
Henceforth A will be assumed (of course, a 
configuration B will eventually cool to A). Notice 
that B is relevant for momentum stack systems. They 
will be subject to contamination by such density 
fluctuation information, and are therefore (as will be 
made clear below), more akin to filter cooling 
systems. If r1+0 a configuration A must rapidly evolve 
to an exactly suppressed VP(t) r0, in analogy to the 
VB(t) discussion. If rr+"" there will still be normal 
cooling (and heating, past some gain threshold) but 
no suppression because energy-density cross 
correlations are absent. 

Of course, for momentum cooling one is interested 
only in the energy fluctuations, so that one seeks a 
filter, for filter cooling, which would ideally 
convert a sum PU signal, V (t), consisting entirely of 
density fluctuations, E in 0 V,(t). But this is 
impossible because Vx(t+t') cannot be predicted from a 
knowledge of V,(t) (with t<7coolin ) alone. That is, 
a given energy fluctuation rec&d can evolve into 
infinitely many different density fluctuation records. 
Now, in general, the filter cooling signal, V,(W) 
=V,(w)'F(w), where F is the filter response, may be 
exbressed as, 
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A unique correspondence to VP(t) can result only if 
F(t'-t) =6(t'-t), in which case VF(t) -VI(t). 

There are elementary, practical consequences of 
this distinction. For instance, a Palmer system, with 
fixed bandwidth [WI, may be constructed with PO to 
obtain optimum performance (no suppression). A 
similar optimum limit does not occur for filter 
cooling I since correlations, as (2) indicates, are 
necessary to form a signal containing energy 
information. V,(t) cannot equal VP(t); therefore 
V (t) inevitably carries a contamination 
f7uctuation noise. 

of density 

Even this rather obvious property is not manifest 
in existing treatments. I will now make reference 
directly to expressions in Ref.2 [BL...], which marks 
great progress in placing stochastic cooling on a firm 
theoretical basis. Expressions BL99a and BL99b for 
the "+l factors, appropriate to filter and Palmer 
cooling respectively, can clearly be made identical 
for arbitrary G (w). Especially in the limit r?+m, it 
is necessary, qui e independently of .h the theory of 
BLsect.4A,B&5, to introduce zome constraint that 
Gl(0)+O. Ultimately the lack of derived restriction on 
Gl(W) may be traced back to BL29: 

p,, = f GCy;,p,,p,.) 
which is a sufficiently general form for the dynamics 
of a Palmer system, but represents an enormous 
simplification for filter cooling. In the sequel 
(BL30-50) it is assumed implicitly that (3) is local. 
That is, 

h(t) = z G (9,(t), t(t)) t+) Ih) 
j 

As we have seen, nonlocality is an essential feature 
of filter cooling. Strictly one needs a foam 

h(t) = 2 G(bj{fjl Ffi’t% --) b’b) 
i 

and a crude local approximation would be: 

k(t) = 2 G (T(t), qj”I/ PjkJ, “lpi -pJI) 

tic) 

which is st?rll different enough from BL29 to be 
incompatible with their development. 

The kinetic equation approach (BL26-34) is 
certainly an adequate point of departure. Notice that 
D(q,p), 

'-fyeld 
the full phase space distribution function, is 

a on the phase space. In the filter coooing 
case one face5 a nontrivially' non-local and 
non-linear field theory. Reducing the dynamics, eqs 
(4), to an effective form (3) can only result from a 
self consistent chain. An effective instantaneous 
G(q.,q.,p.) depends 
dyn&mi&,‘l 

on the past history of the 
the correlations and the mixing rate. That 

is , it is a function of the E Is, and the E 
themselves determined by the G?i,j)t5. fl 

1s are 

Power Spectrum Sum Rules 

is 
Another characteristic constraint on G1(u) which 

missing from non-self-consistent theories involves 
the integrated power spectrum: 

&,7-) f JWPkGLJ 
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where P(w) : IVr(ql 2/z 
long observation *time (bu?:<?~o&s)" ";:':;;:,""~ 
examine the entire Schottky spec f B rum i anine an ideal 
1 PU with m bandwidth (but eicluding zero frequency). 
However, the electronics (filter) following it has a 
sharp cutoff at W. Therefore V,(w), the influence on 
the beam,, contains no frequency components > W. 
Suppose W is a fequency sufficiently hjgh that,each 
particle's passage is resolved. 
for N particle5 

Then E(W ,T)= NW T/TO 
circulating with period T . If the 

loop is open E(W,T)= NW(T/TO +l) for x W. ' Now, a 
characteristic of the existent treatments (BL64, and 
particularly explicit for the beam response presented 
by Van der Meer6) is that s(w>WJ :l (at least below 
instability thresholds). Thus E(W ,T) - E(W,T) does 
not change when the loop is closed, and therefore 
E(W,T) cannot either. 

In most treatments it is convenient to make a 
further assumption: that the distributions are q. 
independent and dynamics depends only on difference& 
qi-9 

J 
(BL39-42). This simplification is usually 

refe red to as a model of the "non-overlapping" 
Schottky bands situation. This leads to independent 
suppression over each band, thus allowing the tighter 
constraint, 

I pwdw o 3 NT’ / 
Physically, constraints (5) and (6) represent the 

fact that N point charges circulate past the C PU each 
turn, and that W limits the scale of time correlations 
possible in the rearrangement of their azimuthal 
spacings. The entire problem may be studied in terms 
of PIJ arrival time difference correlations by 
converting (5) or (6) via the Wiener-Kintchine 
theorem. 

For Palmer momentum cooling (case A above) 
consider the spectrum from an auxiliary 1 PU observing 
the beam (but not feeding back). The dynamics are 
particularly simple: 

Pi z 2 ‘@i-9,) g(Pj ) 
J 

That is, the G(j)'s of (3) factorize, which leads to a 

band by band constraint (6). Factorization of G is 

evidently a powerful assumption. If the cooling term 
is neglected in the kinetic evolution equation for the 
Single particle distribution function, f,(q,p) (BL33), 
an initially factorized f, evidently remains 50 in 
time. If fl is exactly factorizable the VI(~) signal, 
seeing only density fluctuation, will not change. The 
n+O limit of Palmer cooling was an obvious example of 
this. 

The one good piece of data immediately available 
to me relevant to (6! is in Fig 26 of Ref.1. A 
careful analysis of the filter cooled Schottky band 
pictured gives a closed to open loop trace area ratio 
of =o.g. Whether such a marginal suppression 
contradicts (6) can depend on several other 
considerations: 1. For filter cooling the "non 
overlapping" bands approximation is not exact ((5) is 
the proper statement). 2. The PU's or K's may have 
some transverse sensitivity bias. 3. Other non ideal 
realities of the experiment become significant, such 

as a 10, or amplifier noise (which, after all, 
deter&%sK the shape of the asymptotic band 
illustrated! 1. 

This same figure from Ref.1 illustrates another 
feature implicit in the above sum rule for filter 
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cooling. As I pointed out for Palmer cooling, VP(t) 
'9 suppressed. Indeed the kicker signal must 
experience a net suppression when the loop is closed 
on x [well adjusted] cooling system. In? other 
words, a system which cools all particles presents net 
negative feedback to energy fluctuations which 
constitute some optimal portion of the kicker signal 
conten:. (kicker 
signal) 

But for filter cooling, Vc and 
are proportional. 7 Thus a normal y behaved 

notch filter circuit will induce a closed loop 
distortion Of vc that must have the form of a peaking 
at the notch (see Fig. 2). 

Fig. 2. Sum PU and Kicker signals (one band) 
with loop opened(-----) and closed(-----). Each 
Sum PU curve has same area. 

The Renormalization Group 

The RG method" provides a procedure for treating 
fundamentally difficult problems in statistical 
mechanics. Because of their difficulty and the RG's 
generality, one does not expect to present compact 
formulae (or even possibly complicated expressions!) 
representing a ~~solution" to the problems. In fact 
the real work of applying RG theory to a specific 
problem is in the numerical analysis, the theory 
serving only as a sort of inspiration for how to 
proceed, what sorts of behavior to watch for, etc. To 
gain a flavor of C,hia context refer to the reviews of 
Wilaon7'. 

Also, as many approximations and assumptions as 
the existing treatments require, are necessary to 
arrive at a tractable numerical procedure. Despite 
these disadvantages the RG can provide deeper insight 
into high gain cooling limits because: 1. It retains 
an essential self-consistency in the analysis that 
cannot be retained by other means; and 2. A consistent 
operational procedure is established to evaluate the 
relevancy or irrelevancy of various assumptions. 

A classical application of the RG is to the spin 
ordering phenomena near the Curie point, a static 
problem (i.e. temperature equilibrium). The initial 
conditions are lattice spacing, the local spin-spin 
Hamiltoniam, etc. and the parameter is temperature. 
The RG procedure starts with a basic, microscopic 
Hamiltonian, then examine3 the crystal [e.g. 
correlations] on a systematically larger scale. The 
original local spin Hamiltonian is transformed 
consistently at each scale change until a macroscopic 
#effective is produced. In this way one bridges the 
gap of -f -scale between the microscopic #+ and the 
long range correlation effects known to dominate near 
phase transitions. 

Strictly cooling is non-static (and the RG 
approach can be extended to nonequilibrium problems'). 
However, an analogy to the spin problem is possible 
for quasi-static intervals of time T<<r 
well past any loop closing transients. cow,E: 
initial conditions are 

p&'qJ;p,j';,;;"* and 
mean particle density, TO, 

the analogous parameter is mean 
Notice that time replaces lattice 

spacing as the scale variable. 

The RG approach relies on scale invariance and 
locality of interaction. The concept that a frequency 
domain signal can be used to describe cooling is 
equivalent to scale invariance in time since V(W) is 
an average over T. This also indicates the necessary 
feature of long range correlation importance near 
critical points (instability). A beam instability 
threshold is characterized by a growing coherent 
density mode. For this to show up in the Fourier 
spectrum it must persist over the whole time scale T. 
Locality of interaction is approximately met in 
practice since N/T W<<N. 
d fficulty correspo ding to spin 

i 
8 

However l<<N/T W, which is a 

nh 
probl&ms including 

nearest neighbors (n>>l). This is only a 
complexity in establishing the first step 
"microscopic" ( i.e. one turn) interaction C T 
is the minimum microscopic scale, at least for effiteP 
cooling, due to the inherent filter correlation time 
("To). 

The kinetic equation approach to simplifying the 
full statistical problem is to integrate over all N-l 
[phase] space degrees of freedom. The inconsistency 
of doing this with the basic many particle nature of 
the interaction leads one to work backwards through 
the BBGKY hierarchy, which must be truncated in some 
ad hoc manner (BL35-36). The RG approach starts with 
a microscopic interaction, then self-consistently 
integrates out time correlations (frequencies). 
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