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Introduction 

At low energies and low intensities the considera- 
tions in the choice of the focusing strength (betatron 
tune v) for a synchrotron are the beam size and the 
orbit distortion due to field errors which, together, 
generate a geometrical requirement on the size of the 
beam pipe and the good field aperture. Indeed, the 
strong focusing principle was invented to reduce the 
necessary magnet aperture, thereby the cost of the 
magnets. The closed orbit distortion increases with v 
and was cited1 as the factor counteracting the desire 
to reduce the beam size indefinitely by going to ar- 
bitrarily strong focusing. At high energies and in- 
tensities and with modern technology this is no longer 
true. The beam size is generally negligibly small and 
the orbit distortion can be corrected to arbitrary 
desired accuracy. Studies of field errors and orbit 
distortions are now used for sizing the correction mag- 
net system rather than the aperture. Other types of 
geometrical demands on the aperture arise from beam 
manipulations such as stacking and resonant extraction. 
These requirements tend to be local and can usually be 
satisfied bv local lattice insertions (hiqh- or low-~. 
high- or zero-dispersion etc.). - 

. 

In high energy synchrotrons or colliders for which 
there is no geometrical demand on aperture why, then, 
can one not apply arbitrarily strong focusing (high V) 
and use millimeter apertures for millimeter beams? The 
reason is the electromagnetic requirements which must be 
satisfied in order to stably transport a high current 
beam of whatever size through a conducting pipe.* The 
beam current induces a voltage through an "impedance" 
of the beam pipe. This voltage can act back on thebeam 
as positive feedback and make it unstable. Low fre- 
quency components of these coherent instabilities can 
be damped by negative electronic feedback systems, but 
high frequency components can only be checked by Landau 
dampinq derived from a spread in the natural frequencies 
of individual particles in the beam which causes the 
instabilitv to lose coherence. The larqer is the fre- 
quency spread and the smaller is the "impedance" the 
more stable is the beam. 

-. - 
The "impedance" depends and, therefore, imposes 

demands on the material, the structure, the shape and 
the size of the beam pipe. The tune spread Au is 
limited by non-linear resonances. The excitations of 
high order resonances by magnetic field errors are small 
and negligible beyond the octupole. But in colliders 
the excitation by beam-beam forces is large and reso- 
nances up to the 7th order must be avoided. This im- 
poses a severe limitation on the allowable tune 
spread. This excitation is, however, independent of 
the orbit functions and hence makes no demand on the 
focusing strength. The dynamics of coherent insta- 
bilities of beams is a complex, multidimensional pro- 
blem. To make our discussion understandable we will 

*We ignore here the economic considerations. Extremely 
strong focusing, millimeter-aperture synchrotrons may 
be extremely costly. A tiny lady's watch costs more 
and is much less reliable than a man's pocket rail- 
road watch. 

**Operated by the Universities Research Association, 
Inc., under contract with the U.S. Department of Energy. 

resort to using simplified semi-quantitative des- 
criptions. 

Conditions for Stabilities and Implications 
on Focusing Strength 

The condition for longitudinal stability is2v3, 
at high energies 

<+) <Fe y+(T) ' (1) 

where we have used the approximation 
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and where 

't 
= transition energy in units of rest energy 

F, = beam distribution form-factor of order unity 

2, = longitudinal impedance 

n = mode number = number of instability waves 
around the ring 

< > denotes value weighed by the mode spectrum 

E = energy of beam 

I = peak current of beam 

4 = FWHM of momentum spread. 
P 

The condition for transverse stability 4 is 

< lZt(><nFt y; au (2) 

where 

Ft = beam distribution form-factor of order unity 

Zt = transverse impedance 

R = radius of ring 

hv = tune spread in beam. 

There are two main types of contribution to the 
impedance. The beam contribution depends on the energy 
and the dimensions of the beam and is non-zero even 
when the beam pipe is removed. This is generally small 
for the range of parameters in consideration. The wall 
contribution is that due to the charge and current in- 
duced by the beam on the pipe wall and depends, there- 
fore, on the material and the geometry of the beam 
pipe. The wall contributions of the longitudinal and 
the transverse impedances are related through the 
geometry of ihe pipe. For a circular beam pipe of ra- 
dius b it is 

(3) 

There are two types of terms in the wall contribution 
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to Z&/n. The "smooth" term, usually known as the re- 
sistive wall term, is that of a perfectly uniform and 
smooth pipe and depends on the size and the s&in depth 
of the pipe. It is rich in low frequencies and is 
aenerallv small. The most important is the "interrup- 
tions" term arising from discontinuities in the pipe. 
and from various beam sensing and manipulating devices 
inserted in the pipe. This term in Z,/n is not sen- 
sibly dependent on the pipe size. For further dis- 
cussion we shall consider Eq. (3) as the approximate 
relation between the total contributions to the im- 
pedances. 

Substituting Eq. (3) in Eq. (2) we can rewrite the 
condition for transverse stability as 

<iz”1> + Ft y (t?)’ “A” 
n R ' 

Solving Eqs. (1) and (4) for v we see that the choice 
of v is hemmed in by longitudinal and transverse sta- 
bility requirements as 
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where, consistent w 
F, = Ft=l. The ava 
when 
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At this point the s ngle allowable value of v is 
1 1 

th the approximation, we have put 
lable range for v shrinks to zero 
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This is a good value to choose for v in any case be- 
cause it allows the largest value of the impedance 
<I ZL I In>. 

Numerical Example and Scaling Laws 

For a 20 TeV proton collider, assuming 

E = 1 TeV (injection energy)* 

I = 5 A (10" protons in a 1 m long bunch) 

42 = 2x10 
-4 

P 
(Ea. = 1 eVsec, Op. = $ m) 

R = 8 km (using 10 T dipoles) 

b = 0.0254 m (1 inch radius aperture) 

&V = 0.01 (limited by resonances) 

we get 
1 -: 

(31.6 n-l)< w(89.4 ,f,&$>' 

and the maximum allowable value of 

(I:i)=23 
n 

with a choice of 

v = 63.2. 

The "impedance" of 2 Q is achievable but not without 
difficulty. If the aperture were reduced by a factor 
2 the max>mum allowable "impedance" would be down to 
the nearlv imoossible value of -0.8 c2. It is in- 
teresting-to take a look at how the conditions given 
by Eq. (5) scale with respect to different parameters. 

A wider range of acceptable v value would allow 
larger values of <IZel/n>. Hence we would like U to 
be large and V to be small. To increase U and de- 
crease V we should 

1. Increase E/I. This extends the acceptable 
u-range at both ends. This also shows that the 
tightest constraint occurs at injection when E is 
lowest. Reducing I helps, but the luminosity suffers. 

2. Increase Ap/p. This raises the upper limit 
of the v-range, but requires either blowing up the 
longitudinal emittance or a huge increase in rf 
voltage (as the 4th power of Ap/p). Neither alter- 
native is very attractive. 

3. Increase b/R. Because of the squared depen- 
dence this is very effective in lowering the lower 
limit of the u-range. Since the stored energy in the 
magnet ring is proportional to B2x(b2R)mb2/R (B = 
magnetic field), to minimize the increase in stored 
energy it is more desirable to reduce R than to in- 
crease b. 
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* 
We consider here only the injection energy. However, 
condition (5) must be satisfied over the entire 
operating energy range. 


