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APPLICATION OF DYNAMICALLY CONSISTENT ELOSURES 
TO HYDRODYNAMIC MODELS OF BEAMS* 
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Livermore, CA 94550 

For applications to phenomena such as 
pinched beams in ion beam fusion or beams in 
dominant axial magnetic fields (ion sources, 
plasma lens etc.), in accelerators, dynamically 
consistent closure of hydrodynamical models is 
discussed within adiabatic assumptions 
mathematically analogous to that of Chew, 
Goldberger, and Low' (abbrev. CGL) for 
magneto-hydrodynamics and that of Berman and 
Mark? (abbrev. BM) for galactic dynamics. 
Numerical comparison with particle codes is 
discussed for pinched beams. 

Hydrodynamic models have been used in 
particle beam research.3,4 Sometimes 
equations of state are assumed by dropping heat 
fluxes5 without detailed attempt to model 
possible beam behavior such as anisotropic 
stresses even in the transverse directions. 
Recently, for the 
fusion research,69 P 

urpose of ion beam inertial 
we have shown that 

dynamically consistent equations of state can be 
derived from the Vlasov equation for some beam 
models under assumptions stated below: The 
particle orbits are allowed to be general 
rosette orbits in central fields, except that 
the ratio of maximum to minimum radial excursion 
is limited by something less than a factor of 
two. If the beam has zero net anaular momentum. 
then consider at least two counted-rotating b ' earn 
components of this type. By remaining closely 
tied to the actual particle orbits, we retain 
the possibility of wave-particle resonances 
typical of resistive-hose instabilities. It is 
not clear that other recent attempts8 at fluid 
models have retained such resonances. In terms 
of the usual cylindrical coordinate system (r, 
8, z) with beam axis in the z direction, the 
above and other adiabatic assumotions are 
summarized by 3 

E = I)(“) = 0 g = 0 [& + 
0 I 

(; - v zpl &]/j = o(g) < ’ 

where 6r is the deviation from average 
in the above mentioned'particle orbit, 
po, pz) are the particle momenta, t is 
time coordinate, and v is the radial 

, 

radius 

oscillation frequency of the rosette orbits (to 
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lowest order, see Eq. 5 below). Dots over 
symbols indicate time derivatives. The 
derivation assumes some frame of velocity vzp 
where [a/at + (> - vzp)a/az] = O(E) which does 
not need to have the velocity of either the 
beam, a wave packet disturbance or the 
laboratory. The final results could be 
transformed to other frames. Assumptions (1) 
will allow non-linear waves: for example, for 
non-axisymmetric nonlinear disturbances in the 
distribution function, a hypothetical 
F[H,cb(r,B,z,pr,pe,pz,t)] is consijtent with 
(l), where H is the Hamiltonian of a moving-beam 
equilibrium (independent of 0). We also 
assume for simplicity that the dominant external 
force on a beam particle of charge q is the 
radial force f, = q(E, - ? Be /c) where 
Er is the radial electric field and Be is 
the e-component of the magnetic field, and c 
is the speed of light. Generalizations to 
additional central forces or relativistic beams 
are straightforward. Non-radial force components 
are assumed to be of higher order in e. 

The mathematical framework is initiated by 
transforming Vlasov's equation to a different 
coordinate system in momentum space, 

. . 
r = U(r, 3, 2, 2, t) + asinY , 

. 

r*i = r* Q(r, 0, z, 2, t) + BcosY . 

Since the "drifts" U and (r-Q) can be 
identified with low approximations of the 
hydrodynamic motions, the analogue of 
"gyro-motion" is relegated to the rapid 
(asin!') and (Bcos+') qyantities with fast 
gyration frequency w=P. Here, 

$(r, 8, z, ;, t) = 

-&fr =$(i BB +Er) , 

w2(r, 8, 2, ii, t), = -$& r [ 1 4 $22 , 
r 

U(r, 8, z, ;, t) = 
2 

-3 iiLp+ 

2 - ar2n 
i 

R y+z--dr-;fg 

I 

, 

and the ratio of amplitudes 
3 _ rLI 
a-z5 ' 

where III is the mass of the beam particle, and f 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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is the body force. Following CGL we expand 

F = y $2 Fi whi>h begins with O(ce2) because 
j=o .J 

the spatial number density n = O(1) in e. 
Under our adiabatic assumptions it iS 

straightforward to derive'from the 
transformations (2)-(3) the "drift-kinetic" 
equation to first order in E, 

Here we have utilized the fact that the 
distribution function F,,(r. 0, z, f, u, t) 
is independent of the rapid-phase Y, a fact 
which follows because the zeroth order (in E) 
form of Vlasov's eauation is aFda\r = 0 as 
in CGL theory. Also, we have symplified the 
drift-kinetic equation (8) by taking advantage 
of the existence of an adiabatic invariant u 
expressed to lowest significant order in E as 

u = 5 ((; - U))2 , 8 = 0 . 

The relation to hydrodynamic motions 
follows from deriving equations for the 
stresses, which are defined in terms of the 
averages 

<h> ,-hF& du dY d; . 

For example, the number density of particles in 
this beam coordinate is 

2 
n : I F + dp, dpg d; = j F, & dp dY d; . 

To lowest significant order in E, the 
components Prr, Pro etc. of the stress 
tenser is related to F, by 

P rr 
= n 

( 
pv sin2Y F 

i 
= 

0 : 
n <pv> 

F. ' 

Pee =n p ( -$ COS%‘jF , 
4R 0 

P r-0 = 'EW=" 451 ( 
Jd sin2Y)F =o , 

0 

P rz 
= PZr = n ((pV)1'2 

. 

sinY (z - vz)) F = ' I 
0 

Pez = PzB = n ( 
J/2,3/2 

20 

. 
COSY (z - vz))F = 0 , 

0 

(8) 
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(‘0) 
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(12) 

(13) 

(14) 

(15) 

(16) 

P 
zz = n ((; - vz)2)F - 

0 

The continuity and momentum hydrodynamic 
equations of relevance can be written for each 
rotating beam component 
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(17) 

$+n (18) 

+ $ Prr - Pee) 1 ,('9) 

Oj _ r apee 
af-Gfe-AT* j = rve , 

DVZ 
ap 

Dt=iii z-&-c 
'f 

where 

D -a mz,+vrtF+ $&+v,& . 

In equation (9), the frequency v plays 
the role of (q Bz/mc) of the CGL theory. A 
physically suggestive "field equation" for v is 

22 
& ffg- =o, ( ) 

(20) 

(2’) 

(22) 

(23) 

which can be derived from equations (4)-(6), and 
(18) provided i does not vary much over local 
beam elements. Closure in terms of generalized 
adiabatic equations of state is possible if in 
addition I.? - + 1 / <i> = O(c2) and (a/az) = 

O(c2) (for example, negligible longitudinal 
Landau damping). We find under these conditions 
that 

(24) 

P 
&g =o i ) P 

z&i- * 
i i 

zz =o 

For the best fully hydrodynamic model, closure 
equations (23)-(25) should be used with the 
continuity and momentum equations (18)-(22) 
which are exact velocity moments of Vlasov's 
equation. 

An axisvmmetric particle code simulation 
with 3000 particles was performed for a 
Gaussian-profile electron beam with initial 
radius of 1 cm, beam energy 50 MeV and current 
1 kA. The beam is assumed to be fully space 
charqe neutralized but with no current 
neutralization. Since a particle code 
effectively calculates the full time development 
of the spatial and velocity distribution 
functions, phase mixing of beam particle 
traiectories is deoicted without further 
approximation, except for numerical ones such as 
numerical noise. A beam initially at 
equilibrium oscillates radially when perturbed. 

(25) 
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The dashed curve in Fig. 1 represents the time 
development of the RMS beam radius, showing 
phase-mix damping of the oscillations. The 
above beam-hydrodynamics model was used in a 
Lagrangian fluid code to recalculate the 
situation simulated by particle code above. The 
hydrodynamic model result is shown as the solid 
curve in Fig. 1. It is evident that phase 
mixing is well reproduced. The apparent phase 

Time-c (cm) 

Fig. 1. Phase-mix damping of radial 
oscillations. 

difference can be further adjusted by a slight 
re-alignment of scale. It is difficult to 
produce identical initial conditions for the two 
calculations. The residual oscillation of the 
particle code is due to finite particle number. 
Fifty radial zones were used in the hydro-code 
calculation; artificial viscosity was introduced 
for numerical stability of large radial 
perturbations. The initial amount of angular 
momentum assigned to each fluid element of the 
hydrodynamic model can be varied somewhat. It 
has been found that realistic radial behavior is 
obtained if the fluid element angular momentum 
is a linearly increasing function of radius. 
The average centrifugal force is l/2 of the 
average pinch force. 

We are happy to acknowledge helpful 
discussions with R. J. Briggs, E. P. Lee, and 
W. Sharp. 
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