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SUMMARY 

The modified betatron concept'g2 has been pro- 
posed as a means of accelerating high current (kilo- 
amp) electron beams to high energy. This device 
einploys a toroidal magnetic field to overcome the 
space-charqe limit on the current in a conventional 
betatron3 it low energy. In this paper, we look at 
the iniection. equilibrium and stability of the modi- 
fied detatron-. 'The main emphasis is on stability. 
An analytic dispersion relation is derived using a 
cold-fluid model of the beam. The results are com- 
pared to three-dimensional simulations performed with 
the electromagnetic PIC code IVOKY.4 The nonlinear 
development of the negative mass instability is fol- 
lowed in the simulations. 

BEAM INJECTION 

In the modified betatron, the equilibrium radial 
location of the beam centroid is determined by equat- 
ing the centrifugal force to the opposing VXB force - - 
from the self and applied vertical 
Kapetanakos, et. al' 

field 8,. 
have shown that under certain 

conditions there is a fortunate cancellation of two 
effects, and the equilibrium radius is given simply 
by r. = yoBmc/eBzo where e and m are the elec- 
tron charge and mass respectively, Bz, is the 
applied vertical . magnetic field, Yomc2 is the 
injected -electron energy and fl = (1 - l/~02)'/2. 
This result is confirmed by a 3-D IVORY simulation in 
which a pulse was injected into a 1 m radius torus. 
The coordinate system for this and all the other 
results we report is cylindrical, r, 0, z, where the 
z-axis coincides with the major axis of the torus, 
and e is the toroidal coordinate. The pulse has a 
finite rise and fall-time in current I and energy y, 
with I = 0 to 10 kA, y = 2 to 5 over 5 ns in the 
head, followed by a 10 ns "body" with I = 10 kA, y = 
5, and finally a 5 ns tail mirroring the head. These 
values for y are the space-charge depressed values 
attained inside the drift region. The injection 
energy y. has somewhat larger values: = 7 in 
the "body" of the beam. The vertical fie\?i applied 
was B, = 114 gauss, which, when combined with yo, 
gives an equilibrium radius of 102 cm. The body of 
the pulse in fact propagates quiescently through the 
first turn (which is as far as the simulation ran) at 
about this radius. A snapshot of the beam near the 
end of injection is shown in Fig. 1. The lack of 
radial force balance in the head (and tail) of the 
beam due to the lower value of i causes an Fxbg 
drift in the z direction. The resulting deposition 
of energy on the wall may create plasma: leading to 
vacuum degradation and possibly an ion resonance 
instability of the beam.6 We have also simulated a 
case where the beam is injected with a radial offset 
of 4 cm from the center of the drift tube. The 
results showed similar good behavior on the first 
turn. 
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Figure 1. Phase space plots of a 20 ns beam pulse 
being injected at e=O, r=R=lOO cm, z=D 
into a betatron. While the upper two 
plots are rectangular, the simulation was 
done in toroidal geometry. Lengths are 
in cm; Vfi is normalized to c. 

BEAM EQIJILIBRlUM 

If the acceleration time in a 1 m radius beta- 
tron is 1 millisec, the beam rotates about 48,000 
times during the acceleration. It is therefore 
essential to have accessible self-consistent equilib- 
ria for the beam. In analytic and numerical work, 
such equilibria form the starting point for study of 
beam stability. Using a cold-fluid model of the 
beam, Finn and Manheimer' have shown that self- 
consistent equilibria do in fact exist. We have used 
Finn's code EQUIL3a to initialize IVORY with a 10 kA 
beam at Y. = 14. The noise present in IVORY due to 
discrete particle effects cause deviations from the 
perfect laminarity assumed in EQUIL3. IVOHY simula- 
tions therefore provide a test of the sensitivity of 
the equilibria to the cold-fluid assumption. In our 
simulations, we propagated the beam for twenty revol- 
utions around the torus during which time the beam 
rotated twice about its own axis. No off-centering 
drifts were observed, and the beam minor radius 
remained constant. From this it appears that the 
EQUIL3 equilibria are not greatly affected by the 
addition of small amounts of temperature. The 
methods of Finn and Manheimer break down as the 
transition from diamagnetic to paramagnetic rotation 
of the beam about its own axis is approached.' An 
interesting, though perhaps lengthy, simulation would 
be to take one of their diamagnetic equilibria and 
accelerate the beam through the transition. We hope 
to attempt this in the near future. 
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BEAM STABILITY 

The circulating electron ring in the betatron 
possesses a number of types of modes of oscillation 
which can be driven unstable through interacting with 
each other or with a resistive wall or with gaps in 
the walls of the device, etc. Here, we consider only 
the first type of instability, which includes the 
well-known negative mass instability.g To obtain an 
analytic dispersion relation, we model the beam as a 
ring which can displace rigidly in the transverse 
direction and which can compress in the toroidal 
direction. The field equation used is that for the 
m=U, (m = poloidal mode number) perturbed toroidal 
electric field Ee(') exp(iee - iwt), 

v’ E(l) JI 4,,i 
- 8 

$, p(1) _ ~~(11 
e > 

*here L is the toroidal mode-number, R is the major 

radius of the torus and p(l) and Jo(l) ar;q;ah;i;;ril) 
turbed charge and current densities. 

corrections to the field equation 

enter only in computing the m=O component of the 
charge density p which satisfies 

a0 'r 
x+ PF + 

a “El 
as PF- ( > 

= 0 (21 

where r(s) is the radial location of the beam cen- 
troid and V,., V 

1 
are the beam velocity compon- 

ents. Equation (2 shows that rigid transverse (m=l) 
displacements contribute to the perturbed net (m=O) 
charge density. This coupling leads to the negative 
mass instability and other instabilities. To relate 
&l), ,(l), "(l) to E(l) we use equations similar to 

those o"f Spra?igle ande Vomvoridis.lo Solving Eq. (1) 
we obtain the dispersion relation 

1= $ (1 + 2rn a/rb) 
{ti pF) 

( >- cinz’y s”” - A”))- $g cg _ q) (3) 

where Wb 2 = 4nnoe2/m, no is the beam density 

rb is the beam radius, Aw = w - en,/y, ;2 
Z 

= eBz/mc, 

0.1: = l/2(1 - $r~/*$a2)$/y2, D = (Ati2 - Use)* - 

Aw2Q02/y2, Qe = ebe/mC, where Be is the toroidal mag- 
netic field. Equation (3) differs from the dispers- 
ion relation in Ref. 10 in that the approximation u = 
!,n,/y has not been made (as well as in other more 
minor respects). This results in growth rates from 
two to ten times larger than those obtained in Ref. 
10, as shown in Fig. 2. A more detailed discussion 
of Eq. (3) is given in Ref. 11. 

The model used to derive Eq. (3) assumes that 
the beam is cold, and neglects finite v/y (u = 
Budker's parameter) corrections to the vertical mag- 
netic field and external field index, which can be 
fairly large." A model without these assumptions 

would be difficult to treat analytically, so we have 
resorted to 3-D particle simulations using IVORY (the 
instabilities in question are 3-U in nature). This 
has the advantage of allowing us to follow the non- 
linear development of the instability. The minor 
cross-section of the torus is represented by a spat- 
ial grid, while the toroidal direction is treated as 
a sum of Fourier modes. 
one case, with y. = 

To date, we have run just 

2 cm, Be = 1 kti. 
14, I = 10 kA, R = 1 m, rb = 

The minor cross-section is a 20 
cm x 20 cm square. The growth rate of the L = 1 
instability predicted from Eq. (3) is 3.6~10~ set-l. 
The simulation shows a growth rate of about half this 
viz. 1.6~10’ set-‘. This reduction is probably due 
to the 5% spread in y as a result of the variation of 
the electrostatic 
Sprangle and Vomvori%ts'nOti~bmpu??o~~at 'ii eiz$ 
spread Ay should decrease the growth rate by an 
amount LAy c(y-2 - ( l/2 -n,)-' /, /vR = 2.1~10~ set-l, 
which agrees quite well with t e simulation. 
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Figure 2. Comparison between growti rates obtained 
from Eq. (3) (Curve A) and those obtained 
from the dispersion relation in Ref. 10 
(Curve B), fo; Fhe t=l instability 'rtran 
occurs when f~o - 0. 

The beam is represented in IVORY by three separ- 
ate groups of particles to resolve the e=O and 1 
dynamics. During the linear stage of the instabil- 
ity, the three groups are equally spaced in e and 
almost identical, as seen in Fig. 3(a). As the 
instability develops into the nonlinear regime how- 
ever, it produces noticeable kinking and longitudinal 
bunching of the beam, as seen in Fig. 3(b). In addi- 
tion the beam heats up in both the transverse and 
longitudinal directions, which tends to decrease the 
growth rate significantly. However, the increased 
temperature causes the beam to develop "spiral arms" 
stretching out to the walls, causing loss of part- 
icles. At the point reached in Fig. 3(b), just 4% of 
the particles have been lost. This simulation will 
be run out further to determine if significant fur- 
ther losses will occur. In the near future, we 
intend to look at the effect of starting with a lar- 
ger spread in energy on the beam. 
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Figure 3. Position-space plots of beam during the (a) 
linear and (b) nonlinear staqes of the 
instability. In the left-hand plots, part- 
icles at all 8-positions are plotted. 
Cimenstons are in cm. 
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