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LIMITATIONS OF BUNCH-CURRENT IN LEP BY TRANSVERSE MODE-COUPLING 

6. Zotter 
CERN, Geneva, Switzerland 

The most severe limitation of beam-current 
in LEP will be a fast transverse instability of 
single bunches, which can be explained as coup- 
ling of transverse modes. These predictions are 
verified with experimental data from several 
operating machines. The dependence of the thres- 
hold on beam and machine parameters is inves- 
tigated in order to optimize the performance of 
LEP. 

1. Introduction 

We investigate the effect of transverse imp- 
edances on single bunches in high energy storage 
rings by extending the theory bf coupled bunch- 
instabilities developed by F. Sacherer'. We thus 
restrict ourselves from the outset to a simp- 
lified model in which only the lowest ("most 
coherent") radial modes are included. On the 
other hand, we do include negative azimuthal mode 
numbers which appear to be most important fbr 
mode-coupling. We also assume that the mode- 
shape is known (Hermitian for Gaussian bunches) 
and that the actual impedance can be replaced by 
a broad-band resonator. Then the coherent frequ- 
encies can be found as the eigenvalues of a 
matrix which may be truncated to quite small dim- 
ensions without large error. If one takes only 
the 2x2 matrix containing the two modes which 
have the lowest thresholds, usually m=O and m= 
-1, then the stability condition can be given 
exolicitlv and we find simole aooroximations for 
either v&y short or very long' bunches. The 
lowest thresholds are found for bunches whose RMS 
lengths are of the order of the inverse resonant 
frequency. This formulation also suggests a 
number of possible means of increasing the thres- 
hold current which was found below design value 
in LEP. The theory has been verified by applying 
it to various existing large storage rings (PEP, 
PETRA) where the mode coupling instability has 
been observed. 

2. Coherent Frequency Shift 

In the absence of mode coupling, i.e. for very 
low beam currents, the frequency of oscillation 
of the mthazimuthal mode is given by': 

=w +m 
wm B s + Awm 

where w = VW~ is the betatron-frequency 
wE= V~W,J is the synchrotron-frequency where: 

and Awm = jDFmZzLf 

is the coherent frequency shift. Here 

0 = wo<p> 10 
4zE/e 

is a factor proportional to the average beam 
current Ic.The beta function <p> in the plane 
of oscillation is averaged over the circumference 
of the machine (weighted by the strength of the 
local impedances). 

The form factor 

Fm = l/(lm(+l) 
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was originally only derived for parabolic bunches, 
but we shall assume it to be a reasonable approxi- 
mation also for a Gaussian. We define the 
effective transverse impedance of two cou led 
modes m,n analogously to the longitudinal case s : 

Zeff = 1 Zl bp)hmnbp-wS) 

BI: hmnbp-wg) 
(5) 

mn 

where the summations over p extend from &to+=. 
and Zl is the transverse impedance per unitdisp- 
lacement.The spectral (cross) power-density: 

h,,.,(w) = X$G$,b) 

is defined in terms of th Fourier transforms of 
the line-density modes '3;, ti). f The bunching factor 

8 (average over peak current) has been included to 
facilitate normalisation which we take as: 

B Ihmn (wp)=l 

It turns out that the sum in the denominator 
of equation (5) is independent of the "chromatic 
frequency" w5= <wg/a, and we get simply 

Z;','= cZ,(w )h (ti -w ) (5') 
P mn p s 

The spectral frequencies of a single bunch are 
qiven by: 

wP 
= pwo + wp + ms +Aw 

Since the mode coupling instability occurs 
also for vanishing chromaticity - contrary to the 
regular head-tail effect - we shall limit our 
discussion to the case ?,=O. 

3. Mode - Coupling 

The coherent frequencies can be found from 
the zeros of the infinite determinant: 

]Mmn+ (tip f ~JJ~ - w) I= 0 

M' = jDF Zeff 
mn m mn 

They are the eigenvalues of the matrix M+(wR+mtis )I 

Without large error, the infinite matrix 'may-be 
truncated to small dimensions includina onlv the 
modes which are coupled and their neighiours." For 
low enough beam-currents, the off-diagonal 
elements - which are all proportional to IO - are 
neqliqible, and we obtain equation (2) since 
At&= -M,,& The frequency. shifts‘ are negative 
for lona bunches which samole the inductive low- 
frequenty impedance. Becaus;? of this negative aii- 
muthal mode-numbers are coupled first. For long 
bunches, the shifts are shown in fig.la: the m= 0 
and m= -1 mode cross over when Aw=~wo. 
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Fig: 1 Coherent frequency versus 

For shorter bun'ches, only the m=O mode 
will have a negative slope since it samples fre- 
quencies around zero. The other modes sample 
increasingly higher frequencies, and tend to 
become capacitive when the peak of the power- 
density lies above the peak impedance. This 
will make the slope positive for larger m as 
shown in fig lb: the cross-over occurs near 
Aw=og . A further reduction of the shift is 
obtained when the off-diagonal elements are 
included. Their presence makes the lines w 
versus I become curved, and more realistic pic- 
tures are shown in Fig lc. Limiting ourselves to 
the 2x2 matrix containing the modes concerned, 
the coherent frequencies are given by the 
solutions of: 

w- w M m m,m+l 
=o (9) 

M m+l,m W-wm+l 

From equation (6) we see that h,,=h,*,. 

and thus Mmn= - M;,, Then equation (9) yields 

a quadratic which has real solutions (assuming 
real matrix elements M) if 

This is an approximate stability crit- 
erion for transverse mode-coupling. It agrees 
essentiflly with an expression derived by 
Kohaupt , but is should be understood to include 
negative mode numbers which are the most 
unstable. 

4. Broad-band impedances 

For a single-bunch effect we are only con- 
cerned with short range fields. In the freq- 
uency domain, this permits us to. replace the 
actual large number of sharp resonances by a 
single broad-band one with the same total R/Q 
value. Since the impedance then is a slowly 
varying function of frequency, we can justify 
neglecting the frequency shift in its argument. 
The transverse impedance of a resonater will be 
written as: 

w 

i = L 

Rl 
(11) 
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characterised by three parameters: the trans- 
verse shunt impedance RI, the quality factor 91, 

and resonant frequency wr. For a Gaussian beam 
we assume that the line-density modes are 
Hermitian with the Fourier transforms. 

hm(w) = j-mCm(wT)m exp(-w272/2) (12) 

The normalisation condition equation (7) 
yields: 

C 2 = J~II /r(m+1/2) (13) 
m 

To a very good approximation, the infinite sums 
in the expression for the effective impedance can 
then be evaluated analytically4. 

5. Threshold estimate 

For short bunches (~,.%<<l) the absolute 
value of the argument of the complex error 
function5 is small compared to unity and we may 
use the first terms of the power series. Keeping 
only the largest term, we then obtain an 
approximation for the diagonal terms of the 
impedance matrix: 

Zeff = 
J2n "rRl 

mm 
Jl/2-lml 

- wrz (14) 
WOQ 

1 
Th$ off-diagonal elements are proportional 

to (0 Z) and hence negligible for short bunches, 
except for the elements: ,,, R 

Zeff = -2xj -r 1L -WT 
0,+1 ~00 r 

(15) 

which are of same order as the diagonal elements. 
The stability criterion then can be written: 

w E/e 
I>J S 

0 (16) 
9' <B>w,R_L/O~ 

For long bunches we can use the asymptotic 
series for the complex error function. A large 
number of terms cancel and the lowest remaining 
one yields: 

Zeff = . 2~ Rl 

Jwgr 41 mm 
(17) 

The off-diagonal elements are all negligible 
for long bunches and the stability criterion 
becomes: 
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10 > ZJZ;; 
wsE/e 

WwrRl/Ql 
(18) 

Thus the threshold current as a function of 
bunch length first decreases as l/2 and later 
increases with 7. The minimum threshold occurs 
near r-l/w and is of the order 

I 
J~x wiE/e 

th = q>w R /Q 
(191 

More exact values for the threshold are 
obtained by numerical evaluation of the truncated 
equation (7) by computer. However, the parameter 
dependence is better seen from the approximation 
which also yields a simple first estimate. 

6. Application to storage rings 

Thresholds have been calculated numerically 
for a number of existing e+e- storage rings. The 
transverse impedance is usually not well known 
and its estimate is the largest source of error. 
The RF cavity impedances are obtained by scaling 
from the LEP-cavity impedance of 3 - 4KR per 
cell. 

For PEP wi.th 120 RF cells with an average 
hole radiu=f 5cm we find the contributions of 
the RF cavities about 0.5Mn/m and a similar 
amount for the vacuum-chamber. With vs=O.OVl, 
a=O.O02,<@>=62m we obtain the threshold curve 
shown in fig.2, with a minimum of about 5mA for 
an RMS bunch length of 18mm. 

For PETRA with 60 RF cavities of 5 cells each 
withme radius of 6cm we get a higher imped- 
ance (1.2&/m), but also a higher resonant freq- 
uency (2.2GHz). An operation with Y =0.063, 
a=0.0027 and <e> = 15m yields the thresh0 d curve f 
shown in fig. 3. The minimum of 4mA occurs near 
a RMS bunch length of 14mm. This figure also 
shows that the coupling moves to modes m= -1 and 
m = -2 for longer bunches. 

A similar estimate has been made for the thre- 
shold in the much smaller machine DC1 (Orsay). 
Up to the maximum current of 300 mA no insta- 
bility could be found, in agreement with obser- 
vation. 

The thresholds for LEP-phase I (640 RF 
cell8) are summarized in fig.4 for operation with 
a 60 chase-shift per lattice period: 

A'minimum of '0.5mA/ bunch occurs for an RMS 
bunchlength of 2cm, slightly below the design 
current of 0.75 mA/bunch. Several means to 
increase the thresholds are under discussion (see 
below). For LEP phase II twice as many cavities 
are added. The situation would become 
catastrophic for copper cavities, but the 
foreseen "spherical" superconducting cavities can 
have much bigger beam holes (7.5 cm radius) and 
have lower impedances.Hence the total transverse 
impedance of the machine is only increased by 
about 30x, and the thresholds decrease 
accordingly. 

7. Conclusions 

A simplified theory of transverse mode- 
coupling has been developed. The thresholds of 
instability can be calculated by finding the 
eigenvalues of matrices which may be truncated to 
a rather small size. The approximate expression 
for the threshold current suggests a number of 
means to raise the threshold: 
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Fig 3/4: Thresholds in PETRA/LEP 60" 

a. increased synchrotron frequency (higher RF 
voltage). 

b. increased bunch-lenqth (change of partition 
number, non-linear wigglers or higher 
harmonic RF system) 

C. reduced betafunction at RF cavities. 
d. reactive feedback system (avoid coupling by 

keeping m=O mode-frequency constant). 
e. decreased bunch length (needs experimental 

verification). 
f. higher injection energy. 

Most of these cures have side-effects, e.g. when 
the synchrotron frequency is increased at injection, it 
can no longer be kept constant during acceleration and 
it becomes necessary to jump synchro-betatron reson- 
ances. A higher harmonic RF system for LEP would be 
rather costly. A non-linear (dipole-octupole or 
quadru-sextupole) wiggler may be a more economic 
alternative. The brute-force method of reducing the 
betafunctions at the RF cavities is rather limited 
before problems occur with the machine optics. 

A factor of 50% in one plane could be gained by 
simply placing the copper cavities only near the 
F-quads where the vertical betafunctions are small. A 
reactive feedback system has been developed at the ISR 
and should in any case be useful for keeping the 
coherent tune constant. Its effectiveness needs to be 
tested on existing machines. Finally, the somewhat 
surprising fact that the stability becomes better for 
shorter bunches - i.e for higher peak currents - may be 
limited by higher mode losses in sensitive components, 
even if the ,required short bunch lengths can be 
reached. In any case, the wide variety of possible 
cures need experimental verification under clean 
conditions, and support from computer simulations which 
are now in progress. 
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