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Sumnary 

The longitudinal motion of bunched beams in large 
storage rings has been simulated in synchrotron phase 
space, including the effects of wake-fields excited by 
the bunches themselves in the RF cavities. Using the 
delta-function wake-potential of the cavities requires 
a great deal of computing time and, in addition, the 
results depend on the number of superparticles 
considered. The computing time can be strongly reduced 
by using tables of wake potentials of a fixed bunch 
shape.We investigate the case where the distribution is 
assumed to be Gaussian. The validity and limitations 
of this model as function of the beam intensity are 
analysed by evaluation of higher moments of the 
distribution (variance, skewness, kurtosis). This 
shows that the assumption of the shape remaining 
Gaussian is insufficient and yields misleading results 
when the beam current is too high. This phenomenon 
appears to be related to the manifestion of turbulence 
in the beam. 

1. Introduction 

This paper compares two approaches to the simu- 
lation of bunch lengthening and widening in an electron 
storaqe rinq. They differ in the descriotion of the 
wake potential, i.e. the decelerating force which is 
built up while the bunch traverses an RF cavity and 
reacts back on later particles in the same bunch. 

-. - 

One way of describing this wake potential is by a 
sum of wake potentials for point charges (Green's func- 
tion) which may be obtained by adding the contributions 
of all the cavities modes'. However, this approach re- 
quires much computing time and thus conflicts with the 
legitimate purpose of the simulation, namely the simu- 
lation of the bunch behaviour over several damping 
times. This problem becomes especially evident when 
the damping time corresponds to a large number of 
turns. Other representations of the wake potential re- 
quire much less computing time for the simulation. 
Here we consider the simplest model: the wake po- 
tential .for the whole bunch is a function of only two 
variables, the r.m.s. bunch length, and the time rela- 
tive to the bunch centre. The aim of this study is not 
only to validate a model, which we expect to be the 
fastest, but also to try to shed some light on the 
relevant parameters for this type of approximation. 

2. Theory and models considered 

In the simplest case, 
one RF station. 

the storage ring has just 

viation E, 
The longitudinal motion (energy de- 

time delay t with respect to the synchronous 

particle) of the nth particle, evaluated at the mth 

turn is described byz3: 

m m-l 
En = E m-l - 2Tn cn n- + U;;l+ 20,aJib7~ R; (1) 
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m 
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the transient beam-loading, To 
~~~er,",",Llutri?~e~?l~~ zE the damping time, VRF the 
applied RF voltage with stable phase $s and angular 
f reque;;;ur;y,F9 Ua the radiation loss per turn, oEO 
the energy spread and a the momentum 
compaction. R, is a random number used to describe 
quantum fluctuations. The main problem of the 
simulation is hidden in the wake potential Wn. 

One method consists of writing the wake potential 
in terms of the delta-wake function (Green's function) 
w(At) - At being the difference of position in time 
between two particles - as: 

Wrn&) = l&tn;tJ w(tZ- t;, 
n N j 

(3) 

where N is the number of superparticles, and IoTO/N the 
charge of one superparticle. Note that this sum is 
subjected to the causality condition t,Xj. 

Unfortunately this approach has two limitations: 
firstly it becomes very time consuming with increasing 
number of oarticles N as the number of related 
operations scales with the square of N. This can be 
only partly reduced by grouping (or "binning") a 
certain number of neighbouring particles'. Secondly 
the results obtained with such a formalism are 
sensitive to the number of particles considered , which 
usually implies several runs with different N for the 
evaluation of asymptotic values. 

Another method is to approximate the particle dis- 
tribution by some known functions for which pre- 
computed tables of wake potentials can be prepared. 
With this approach, the running time scales linearly 
with N and the results can be considered as asymptotic. 

In this paper we investigate the simplest model 
where we apply - whatever the actual bunchshape is - 
the wake potential of a Gaussian bunch with the 
corresponding bunchlength. In other words, we simply 
state that - as far as the wake potential is concerned 
- the bunch is fully characterised by the evaluation 
of the first two moments of the distribution (mean 
value and r.m.s. standard deviation), which requires a 
single set of tables of wake-potential for different 
bunchlengths according to: 

Wm(tn) = W(om , t - <t>) . 
n n 

The same assumption of constant bunchshape is usually 
made ,in the analytical approach of the mode-coupling 
model“. 

The validity of this approximation is judged by 
the svstematic evaluation of two additional moments of 
the distribution (skewness and kurtosis). These higher 
moments are exactly zero in the case of a normal dis- 
tribution and thus we expect that the study of their 
behaviour should yield sufficient information to 
influence the decision on the type of approximation 
required. An improvement to this model consists in the 
development of the distribution into a serie of 
orthogonal polynomials. Results using up to sixth- 
order Hermitian 
recently'. 

polynomials have been published 
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3. Simulation results and diagnostics 

In this section we compare the simulation results 
obtained with the delta-function formalism with those 
of the Ysimplified model described above. All the 
tables of wake-potentials were obtained with the code 
BC16. The comparison applies to LEP at injection 
energy (2DGeV) with the bunch-current as independent 
variable. 

Nevertheless, in order to demonstrate the 
influence of other parameters (such as the momentum 
compaction [I and th'e related number of synchrotron 
oscillations per turn vs) on the validity of th; 
model, we compare the results for two LEP-lattices (60 
and 90' phase advance). After each turn we evaluate 
the skewness S and the kurtosis K according to the 
definitions: 

S=l Na3 ; (y? 
n=l 

K=1 
NU4 

c" (xn-j;)L' - 3 

n=l 

3.1 LEP - 60' lattice 

As can be seen from Table I, for this lattice both 
formalisms yield very similar bunch lengthening factors 
in the whole range of currents considered. At the same 
time we observe that the magnitude of S and K increase 
with current and tangible deviations from a gaussian 
distribution occur at currents higher than 0.5mA (see 
Table I). 

Despite the similarity of the global bunch- 
lengthening, however, we observe that the strongly 
non-gaussian shapes occuring at the maximum current 
tested of I.2 mA artificially introduce increased 
fluctuations of the centre of the bunch. This 
phenomenon is clearly pointed out by comparing the 
following procedures for the evaluation of an averaged 
r.m.s. bunchlength over M turns (N particles): 

M 

(8) 

By doing this, we note that these two values are almost 
identical with the delta-wake formalism, whereas the 
gaussian model yields a relative difference of over 
20%. 

Table I 

LEP 60'1attice : Comparison of the bunch length versus 
single bunch current. (G = Gauss, S = delta-formalism) 

io(mA) SG KG U;(Ps) UE,(PS) 

-- 
0.3 <0.5 61.0 41 43 

0.6 <l.O <3.5 47 46 

1.2 <2.5 t19 63 65 
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3. 2. LEP - 90" lattice 

The main difference of this lattice compared to 
the previous one is a reduction of a by almost a factor 
two. Already at 0.6 mA the simplified model 
underestimates the bunchlengthening by 8%. By further 
increasing the current, we observe the sporadic 
appearance of negative values of the skewness. Apart 
from this new feature, the answers obtained up to 1.0 
mA - although they underestimate the bunchlengthening - 
do not give any indication of an incorrect behaviour of 
the bunch. At 1.2 mA, however, the simplified 
simulation yields a totally unphysical behaviour of the 
bunchlength, consisting in the repetitive blo,rr-up shown 
in the Fig.1. 

Looking at the turn-by-turn fluctuations of S and 
K, we can observe a close relation between the 
behaviour of the skewness and the blow-up of the 
bunch. As can be seen from Fig. 2, the skewness 
firstly exhibits some negative values and then begins 
to alternate regularily between positive and negative 
values with increasing magnitude. The change of sign 
occurs about every 10 turns corresponding approximately 
to half the synchroton period, and the onset of this 
periodic mechanism coincides exactly with the blow-up 
of the bunch. As illustrated in Fig. 2, the subsequent 
decrease of the bunchlength corresponds to a similar 
decrease of the magnitude of the oscillations of S. 
Furthermore, once the bunch has almost reached its 
original dimensions (2000 turns) the skewness returns 
to small and positive values. The next appearance of 
negative values coincide with a new blow-up. Figs.2 
and 3 illustrate the discrepancies between the two 
models by comparing the values of the corresponding 
answers of S and K, while Fig. 4 represents the 
behaviour of the bunch obtained with the delta-function 
wake formalism for the same conditions. 

From these simulations, we observe that the 
sporadic appearance of negative values of S yields an 
underestimation of the bunchlengthening, while the - 
onset of the periodic alternation of positive and 
negative values corresponds to a blow-up situation 
which precludes any information on the expected 
bunchlength. 

4. Conclusions 

The aim of this work on longitudinal simulation of 
particle stability was to minimize the computing time 
without abandoning accuracy. This can be achieved by 
using pre-computed tables of wake-potentials for 
suitable approximations of the particle distribution. 
It seemed worthwhile to first test the simplest model 
which therefore requires the least computing time, 
i.e. the assumption that the bunch shape remains 
gaussian. 

This study enables us to point out some general 
features which should be considered in testing higher 
order approximations. Firstly the skewness and 
kurtosis show systematically greater deviations from 
zero than the corresponding results of the delta- 
function wake formalism. Secondly, the number of 
synchrotron oscillations per turn vs appears to be a 
crucial parameter for the limitations of the model. 
Finally - and this seems to be the most powerful tool 
in such a comparison, - the appearance of negative 
values of the skewness (inexistent in the 
delta-function formalism) may be interpreted as a 
warning signal indicating the failure of the model. 

Considering these arguments, the use of the lowest 
approximation cannot be regarded as sufficient, as it 
is not possible to predict the validity of the results 
with certainty. Since the wake-field part of the 
simulation is quite sensitive to the asymetry 
(skewness) of the bunch, this parameter has to be taken 
into account. 

For comparison: at 1.2 mA $<D.6 and K6<3.0 
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On the other hand, even for strong deviations of 
the kurtosis, there seems to be little influence on the 
results. For these reasons we expect a model 
approximating the bunch distribution as a function of 
both its r.m.s. standard deviation and its asymetry to 
be sufficient for most longitudinal tracking 
simulations. Such a model has the advantages of being 
faster than the delta-function approach and at the same 
time requiring less space allocation than an expansion 
of the particle distribution into many orthogonal 
polynomials. 
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Fig.1 Bunchlength versus number of turns (Gauss) 
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Fig.2 Comparison of the skewness (full line 
= Gauss; dotted line = 6-wake) 
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Fig.4 Bunchlength versus number of turns 
(b-wake formalism) 

References 

1) D.Brandt, CERN ISR-TH/82-09 (1982) 
2) A.Renieri, Frascati, LNF-75/11R (1976) 
3) P.B.Wilson et al 
4) B.Zotter, 

., SLAC PEP-Note 355 (1981) 
this Conference (LEP-Note 402,1982) 

5) R.Siemann, CBN 82-27, Cornell Univ.(1982) 
6) T.Weiland, Proc.Int.Conf.on High-Energy 

Accelerators,Geneva,1980,Birkhauser 
Verlag Basel,p.570. 

Fig.3 Comparison of the kurtosis (full line 
= Gauss; dotted line = g-wake) 


