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Summary 

The induction linac bunches of heavy ion fusion 
scenarios are strongly influenced by the longitudinal 
space charge impedance. This is in distinct contrast 
to relativistic bunches in storage rings where most 
of the data on stability have been obtained. 
Simulation results reveal that when space charge 
effects are large, the stability requirement of small 
growth rate relative to the synchrotron frequency for 
relativistic bunches is replaced by the relaxed con- 
dition of small growth rate relative to the frequency 
spacing of the space charge wave modes on the bunch. 
Dispersive effects from finite pipe size tend to make 
the lower frequencies less susceptible to instability 
than higher frequencies. Since induction modules 
have a high resistive component only for the lowest 
bunch modes, stability is better than would occur for 
a broadband impedance of comparable magnitude. These 
results indicate that long term longitudinal bunch 
stability is realizable for induction linac drivers 
for heavy ion fusion. 

Introduction 

The final lens system for focusing an intense beam 
of heavy ions for inertial confinement fusion 
requires a very small longitudinal velocity spread. 
For a uniform beam the currents envisioned would be 
above threshold for longitudinal instability driven 
by the induction module and space charge impedance, 
and would contribute to growth of the velocity 
spread. For bunched beams, however, there is clear 
evidence1v2 that the coupling of growing waves and 
damping waves through bunch end reflections can have 
a stabilizing influence. However, for sufficiently 
fast growth rates it has been observed in relativis- 
tic storage rings that this reflection mechanism 
breaks down. These issues have been addressed 
through a particle simulation code3 which can 
model an arbitrary machine impedance including space 
charge forces (with finite pipe size effects) in an 
induction linear accelerator. Results indicate that 
the end reflection process does indeed improve the 
long term stability characteristics of an induction 
linac bunched beam. 
threshold is reached. 

Ultimately, an instability 
but at values of the module 

impedance which are higher than required for typical 
induction linac drivers. Dispersive effects intro- 
duced by the finite pipe size reduce the group veloc- 
ity of high frequency perturbations, making their 
threshold requirements more severe. The thresholds 
observed are consistent with a mode coupling model 
of the bunch instability analogous to Sacherer's4 
analysis of storage ring bunch instabilities. 

Coherent Longitudinal Bunch Dynamics 

The coherent propagation of a longitudinal per- 
turbation on an induction linac bunch is driven by 
the induction module impedance and space charge. 
The impedance of the induction module is well 
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represented over the most important frequency range 
by a parallel RLC circuit. The dispersive space 
charge force law of a beam in a circular pipe can be 
approximated by an electric field whose k dependence 
is given by 

Ecc ik2 (1) 
l+ak 

where a = (B/2.4)2 for pipe radius B. This 
expression is obtained from a Bessel function expan- 
sion of the longitudinal field in a finite pipe, with 
the value 2.4 the first zero of Jo. For a purely 
rectangular, cold bunch of length L, space charge 
wave modes can be obtained from a fluid model. The 
eigenfrequencies of these modes are given by 

2 
% = 0 v ' (k,)'/(l + .k;) (2) 

kn =?f (3) 

where n is any integer and L is the bunch length. 
The plasma wave velocity, 'I,, is given by 

V2 
0 

= q2gx/m , (4) 

for charqe q, g = 1 + 2Ln (E/A), line density (x) 
beam radrus A, and mass m. Note that at high fre- 
quencies the modes coalesce, and the group velocity 
tends to zero. 

Microwave Instability 

For a non-relativistic uniform beam the threshold 
for longitudinal instability for machine impedance 
per unit length 7.' and wave vector k is given by the 
Landau damping5 condition 

vo2(Z'v/k) > 2rF vth2 (5) 

where vth is the full width, half height velocity 
spread, v is the beam velocity, and F is a form fac- 
tor of the order of unity. 

For relativistic bunched beams in a storage ring 
it has been found that if the analogous condition is 
satisfied for modes of wavelengths shorter than the 
bunch, there is instability only if the associated 
growth rate exceeds the 
frequency. Sacherer4 

synchrotron angular 
has analyzed this phenomenon 

in terms of a perturbation expansion, and found that 
the above condition corresponds to strong coupling 
of the unperturbed modes of the bunch by the machine 
impedance Z'. The coupling is strong if the associ- 
ated growth rate exceeds the local mode spacing. For 
hot bunches, where the thermal velocity greatly 
exceeds the plasma wave velocity, the mode spacing 
is the s,ynchrotron angular frequency. 

Simulations of the hot bunch microwave instability 
were performed, with the machine impedance modeled 
with the usual Q = 1 resonator which has been found 
to well represent most storage rings. A threshold 
for instability was found with the above form factor 
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Figure 1: Equilihrium longitudinal density of an 
initially parabolic distribution below 
microwave instability threshold. 
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Figure 2: Equilibrium longitudinal density of an 
initially parabolic distribution above 
microwave instability threshold. 

F = 0.6. Figures 1 and 2 show the density distrihu- 
tion after saturation of a parabolic bunch below and 
above the stability threshold, respectively. The 
initial velocity spread and bunch length were the 
same in both cases, with the impedance doubled in 
the latter to exceed the instability threshold. 
Below threshold, there has been some softening of 
the sharp edged parabolic distribution, but no 
appreciable bunch lengthening. Above threshold, the 
bunch lengthens until an equilibrium is reached. 

1nstabilit.y Thresholds for Induction Linac Bunches 

In the simulations shown, induction linac bunches 
are modeled by a uniform density with 10% parabolic 
ends. The thermal spread was constant over the 
uniform region with a value of approximately 0.1 of 
the wave velocity vo. In the parabolic ends the 
phase space distribution is elliptic.6 The beam 
pipe radigs is .05 of the bunch length. Figure 3 
illustrates the resulting phase space distribution. 
Runs were performed using a resistance with a high 
frequency rolloff. The magnitude of the resistance 
is best expressed in terms of e-folding lengths L, 
of the nondispersive uniform beam longitudinal 
instability. The e-folding length is inversely pro- 
portional to the resistance in the parameter regime 
studied. Figures 4, 5, 6 are phase space plots of 
runs with resistive e-folding lengths of 0.6, 0.3, 
0.15 bunch lengths and at times corresponding to 12, 
6, and 3 plasma wave traversals along the bunch. 
,Thus, each figure represents the same total 
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Figure 3: Initial phase space distribution for a 
model induction linac bunch. 
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Figure 4: Phase space distribution for L, = .6 
after 12 plasma wave traversals. 

exponential growth ,if there is no reflection 
stabilization. (All cases are well above the Landau 
damping threshold as determined primarily by the 
space charge force, which is unchanged from case to 
case.) It is clear that a threshold for instability 
has been crossed. A calculation of the ratio of the 
uniform beam growth rate r to the spacing ~~~ of 
the modes of Eq. (2) is shown in Table 1, and sug- 
gests a criterion similar to that of Sacherer's. The 
higher frequency modes are more closely spaced 
because of the space charge dispersion, and low fre- 
quencies should be relatively less susceptible to 
instability. This appears to be borne out in that 
low frequency growth is more dominant for the short- 
est e-folding length. 
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Figure 5: Phase space distribution for L, = .3 
after 6 plasma wave traversals. I ,“. * * - - - . . ..*. * : ;c . *. .: c ..* . . . . : . I, -:. I :* : *J . ‘. . 
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Figure 6: Phase space distribution for L, = .15 
after 3 plasma wave traversals 

Table 1 
Uniform Growth Rate/Mode 

Mode Number e-folding length = 

2 

1: 

Au,, Spacing 

.6 .3 .I5 

.65 1.3 2.6 

.65 1.3 2.6 
-70 1.4 2.8 
.75 1.5 3.0 
.85 1.7 3.4 

It should be noted that the above criterion cor- 
responds to a calculation of the e-folding length 
using the group velocity and comparing the values 
obtained to the bunch length. The mode spacing pro- 
vides the proportionality constant. 

2503 

Several runs were made to explore this threshold , 
phenomenon and the conjecture that instability occurs 
only if the ratio S 
or greater. 

= Y/AW,, is of the order unity 
Increasing the bunch length reduces the 

spacing of modes and increases S. It was found that 
doubling the bunch length for L, = 0.6 does indeed 
induce instability, with a time-scaled growth com- 
parable to the short bunch, L, = 0.3 case. As 
another test of the criterion, a narrowband impedance 
was investigated, with peak values corresponding to 
the fifth and fifteenth mode. 
charge dispersion, 

Because of the space 
it was possible to choose a single 

value for the peak impedance such that for mode 5, 
S < 1.3, and for mode 15, S > 2. The lower S valued 
case was stable, whereas the higher was found to be 
unstable. When the dispersion was enhanced by 
increasing a, the fifth harmonic could be driven 
unstable, with again S > 2. 

Stability Requirements for HIF Induction Linacs 

The impedance of HIF induction modules is large 
at low frequencies, with a frequency halfwidth cor- 
responding to only several harmonics on the bunch. 
It is at these frequencies that dispersive effects 
are at a minimum and, therefore, stability is at a 
maximum. Runs modeling the induction module impe- 
dance exhibit stability for growth lengths of 0.3 
bunch lengths (calculated from the peak module 
resistance). 

These results indicate that module impedances of 
several hundred ohms/meter, which provide good linac 
efficiency, can be tolerated for a variety of induc- 
tion linac driver parameters. Since the threshold 
value of 2' scales inversely with bunch length, short 
bunches are to be preferred from the point of view 
of longitudinal stability. The numerical studies 
presented are strictly applicable to single beam 
transport, and include neither acceleration nor mul- 
tiple beam interactions. Matching of the end longi- 
tudinal focusing has been idealized. These issues 
may be of importance in determining stability thresh- 
olds and beam quality, and are currently being 
explored. 

In conclusion, numerical results suggest that long 
term longitudinal stability is realizable for induc- 
tion linac HIF drivers. The magnitude of the longi- 
tudinal machine impedance cannot be disregarded in 
obtaining an optimal design, but there is sufficient 
flexibility in the choice of machine parameters to 
permit both high linac efficiency and long term lon- 
gitudinal beam stability. 
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