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Abstract 

The purpose of the paper is to present a comprehensive analysis 
of the coupling mechanism between waves propagating in a periodic 
system of complex structure. The theory is developed in such a way 
as to utilize results from computer programs, based upon the finite- 
element method, to solve the twodimensional eigenvalue problem. 
We first study a single system, simple enough to be considered as 
being characterized by two regions, for which the eigenmodes are 
all known. A matrix analysis is next developed and applied to an 
n-port circuit, representing the whole system considered as an 
assembly of subsystems such as studied first. An example is given for 
illustration. Theoretical results and measurements are compared. 

Introduction 

It has now been demonstrated that the use of finite element 
’ p2e3 to solve Maxwell’s equations instead of finite difference could 
enhancethe gain in computer time and memory by a factor of 4 to 6. 
This significant improvement may hasten direct solution of three- 
dimensional RF problems. In any event, the determination of eigen- 
solutions for the two-dimensional domain with complex boundaries 
is no longer an obstacle to an eigenmode-based analysis, by which, 
undercertain conditions, RF structureswithout cylindrical symmetry 
could be treated. 

We will first consider a single system. Field solutions are written 
in DINI seriesand thedispersion relation isobtained by field matching. 
This technique was applied by Voisin 4 to simple shapes for which 
eigenfunctionsare knownanalytically. Themethod isgeneralized here. 

A dispersion relation is obtained in a closed form allowing easy 
interpretation and approximation. An extension to more complex 
systems will be carried next, using an nport circuit representation. 

Two-Segment Single Systems 

Let us consider the two-segment system of Figure 1. Each 
segment is characterized by a section, S, or S,, surrounded by a 
boundary, C, or C, , for which are assumed to be known the TE and 
TMeigenfunctions Bm and pm, defined by : 

(At + &, ‘I-‘“, = 0, (d’I’,/d& = 0 (1) 

(At + $,, ) ~p;n = 0, b”), = 0 (2) 

where q and ipare orthonormalized and depend only on the transverse 
coordinate, suffix t designating derivation with respect to this 
coordinate. The conventional field-expansion technique consists in 
writing the TE and TM-Hertz vectors, which are reduced in our casa 
to their zcomponent, as a product of the transverse eigenfunctions 
q,.,, or v,,, by the longitudinal eigenfunctions exp (* jo,z) or 
exp (+ j&z), where propagation constants OL,,, or &, are related to 
eigenvalues $ or Y’ and frequency w by : 

PA = +v -aA ,v; = ($q --p; C 
Alternatively, trigonometric functions can be used instead of 

exponentials. Then the longitudinal components of the magnetic 
and electric fields can be written as : 

H, = :[X, F, (01nz) -j Y, F, b+,z)] qIm (r) (4) 

E, = : [Wn F, (p,zl -j S, F, (P,z)] Ip,(r) (5) 

The zdependent odd and even functions F, and F, are chosen 
such that they take values of + 1 at boundaries z = + a, a, standing 
for a, or a2 depending on the segment considered : 

sin cy,z cos a,z 
F, (a,,,~) = Fa, F, k-+,z) = ;o~ 

m m 
(6) 

X, and Y,, the even and odd components of the TE mode, and 
W, and S,, the corresponding components of the TM mode, can be 
taken as components of a complex current vectoil,(X,, Y,) and a 
complex voltage vector V, (W,, S,), representing respectively the two 
modes. From (4) and (5), transverse fields can be derived, At the 
boundaries f a, they can be written : 

E (a) = ,C 
[ 

F R I,, 2 XV*,, - -$ T(P,a)R VnVqn 1 , (7) / 

E (-a) = -PE(a), (8) 

H(a)=? -~T(o,a)I,o~,-~W,Pxv9, 
E I 

, (9) 

H (-a) = -P H(a) , (10) 

where suffix t is omitted for simplicity from the field components 
and from the transverse derivation. R, P, and T are defined as : 

R= (yi), P= (i-p) ,T(ol,a) =a,, (fs~a,,ts~.). (11) 

With fieldswritten in their newformsof (7) and (9),a translation 
of L is represented by @ defined as : 

$ = c;“,: +$-I. (12) 

If field expressions in each segment are written in their own 
coordinatesystemcenteredon 0,and O,,onecan writethecontinuity 
of transverse fields at boundaries z = * a, and z = + a, as : 

E, (a, ) = 9-r E? (-a, ), (13) 

E, (-a, ) = @* 0” E, (a, ), (14) 

where 9 is the halfcell matrix. Using Eq(8) and (10) and observing 
that @’ P = P@, Eq(l3) and (14) are reduced to a single equation, 
yielding : 

f(E) = Er (a, 1 + o-l PE, (a,) = 0, (15) 

f(H) = H, (a, ) + @-I PH, (a,) = 0. (16) 

Using the onhogonality property of functions \Ir, an ‘pm, 
Eq(15) and (16) can be written in the following integral forms : 

Js, z xv’&,, * f(E) dS=O, (17) 

4 vG’2” * f(E) dS=O, (18) 

Is&7Pr, * f(H) dS=O, (19) 

I Sl WI” * f(H) dS =O, for all n . (20) 

Integration of Eq(17) - (20) is performed by introducing the 
coupling coefficients : 

h mn = isI *2mQl rids, em,. = Js, ‘%dldS, 

ehmn 
d*,n 

‘.fc92m 7 v 

with finally yields the system : 

@-‘J, = h P J, , 

I$ v,=-epv,, 

@ T,J,=-B~~~T,PJ,-(Fow)~~~~PV~. 

L 1 @- T, V, = (wP,,) eh 2 P J, + u: e $ TiPV, , 

(21) 

(22) 
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Circuits of Complex Structure 

In electron devices, sometimes more than one circuit are 
necessary to achieve the desired dispersion characteristics and more 
than one passband have to be considered in order to prevent spurous 
modes. The theory developed above could be a useful tool to analyze 
the tiehavior of such a system. First, neglecting coupling between 
circuits, equations similar to Eq(24) are obtained for each of them. 
Next, by introducing coupling matrixes,defined similarly by matching 
tranverse fields on coupling areas, equations for the whole system 
can be derived and solved. This method will be developed here only 
in a simp’ler form by using lumped element circuits. 

Let US consider a case where all the circuits are coupled through 
a single element, which is a resonant slit in the example considered 
here. Coupling is represented by a coupling cell made up of n such 
circuits, as shown in Figure 3, connected to the same impedance Z 
representing the coupling element. Each circuit is constituted of a 
Parallel impedance zi, a mesh impedance Zi representing the circuit 
AiBiCiDiAi, and two currentdiuider impedances [i and qi. The latter 
are determined so that the ratio cui = [i/(ti + qi) corresponds to the 
contribution of the i-th mode current to the excitation of Z and so 
that,intheabsenceof Z,theoriginal uncoupled circuit isreconstituted. 

By considering the voltagecurrent vector (V,I) of nelements 
[(V,, I, I,. . (V,, I,) 1, the transfer matrix of the coupling Cell 
can be obtained. Its elements are written as : 

where h, e, eh and their transposed matrix have elements defined by 
(21) .pz l/p2 r2, l/v2 are diagonal matrixes of elements (filt,r.rIz, 

’ . ..fl’l” ) ktc. , the first suffix being the segment suffix. T and T’ are 
diagonal matrixes of elements Tin, Ti:, , i = 1, 2, with : 

Tin = ain ptnai ,,,i a, 1, Tin = Pin (“:Binai O I 
taPid 

Thedispersion relation is obtained by cancelling the determinant 
of (22). However, the simple form of the first two equationsallows 
elimination of two out of the four vectors. The choice depends on 
the coupling configuration of interest. If, for instance, the passband 
that results from coupling between the TE modes of segment 1 
and the TM modes of segments 2 is to be made evident, (Jr ,V,) has 
to be conserved and Eq(22) is reduced to : 

=0(24) 

The diagonal terms can be interpreted as the dispersion relation 
of the TE and TM modes when crosscoupling is neglected, and the 
others as resulting from this coupling. As every term is Eq( 24) is a 
diagonal matrix except where Q appears, the effect of .$ is to mix 
the even and odd modes together. If # is itself a diagonal matrix, 
i.e., at zero or r -mode, all terms in Eq(24) are diagonal, then Eq(24) 
is split into two independent systems corresponding to pure odd or 
even solutions. The present case can be easily extended to a four- 
segment structure with interdigital symmetry. That is the casa of 
interdigital structures themselves and also of a cavity chain where 
coupling holes are alternated with 180’ rotation. Eq(24) then has 
to be modified slightly by replacing T, and T; by the opposite of 
their symmetric. 

As a finiteelement method provides the possibility of solving 
the eigenvalue problem with the least effort, Eq(24) gives a simple 
way to obtain the dispersion curves and field components. A vane 
structure, with the dimensions given in Figure 2, is taken as an 
example. The coupling coefficients of the first six modes are 
calculated from Eqs(21) and tabulated in Table 1. Their 
distribution is instructive : the separation between symmetrical 
(odd suffix) and antisymmetrical (even suffix) coefficients is clearly 
seen, as well as the importance of coupling between modes. Figure 2 
shows that, for the first passband, even with only four modes, the 
agreement between the theoretical curve and the measured values is 
already excellent. 

TABLE 1 

I 1 1.038 1 0.840 1 0 0 

TEOZ 
8.46 0 0 0 0 0.835 0.788 

TM12 14.40 0 0 0 0 0.788 0.950 

(*) Frequency in GHz 

(25) 

and 

(26) 

where 

, (27) 

and 

mij = $!i (1 + F+ . ..+ F)-’ 
” 

The circuit for one period is constructed around this coupling 
cell, and we assume that its transfer matrix M is known, 

The main problem we have to deal with is finding the eigen- 
valuesof the transfer mat@. If we introducethe simplecticconjugate 
matrix defined as I%? = -S MS where S is a diagonal (n x n) matrix 
of element (y -,’ ) and if h is an eigenvalue, then X-* is an eigenvalue 
of i?l,as a consequence of the reciprocity property. If X is now written 
in the form X = exp(j&), then the dispersion relation can be written 
as : 

F(w) = coso(w) = 5 (X + h-r I , (29) 

which is none other than one-half of the eigenvalue of the sum : 

A=M+M. (301 

This yields the characteristic equation : 

A -2 F(w) I = 0, 

where I is an (nxn) unit matrix. 

(31) 

As an example, let us consider the periodic structure shown in 
Figure 4, commonly used in coaxial magnetrons and which could be 
a candidate for a millimetric-wave device. The structure is made up 
of a vane circuit usad as an interaction circuit and a rectangular 
waveguide, by which RF power is removed. The two circuits are 
coupled together through a biperiodic row of slits. It is known that 
in vane structures the rr mode is the most effective, but is 
impracticable if vanes alone are employed because of the poor mode 
separation. Through the biperiodic slits, this mode is coupled to the 
TM zero mode of the wavegguide, which behaves as a mode filter in 
imposing its mode separation. Unfortunately, the complexity of the 
structure gives rise to other unwanted modes, which have to be 
selectively damped and which we propose to study here. 
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ln order to give an acceptable description of the first passbands, 
at least four modes have to be taken into account, namely, the vane 
mode, the waveguide TE and TM modes and the lowest TE modes of 
the slits, resulting in a six-port circuit from which an A-matrix can 
be derived. The dispersion relation F is obtained by solving a three- 
degree characteristic equation (31). Details of how to obtain all the 
lumped impedances of the model are not given here. It can be said, 
however, that the knowledge of the zero and n modes is sufficient 
to derive the r-shaped equivalent circuit of Figure 3. 

Figure 5 shows theoretical and experimental results. One can 
see that the dispersion curves of the uncoupled system, shown by 
dashed lines, are deeply affected by the presence of slits. Starting 
from the low-frequency end, the first branch comes from the lower 
half of the vane initial curve divided by the slit resonance. The 
second and third are generated from coupling between the waveguide 
TE and vane modes. The second half of the vane curve disappears 
and the previous vane R mode then belongs to the waveguide TM 
branch, as expected. Finally, coupling between waveguide TE and 
TM modes is observed at the high frequency end of the Figure. The 
theory thus predicts the experimental results quite well. 

Conclusion 

A method is proposed to derive field and dispersion curve for 
periodic RF circuit of complex structure. With the theory developed 
in the first part, some useful circuits, for example vane, interdigital 
structure, cavity chain or iris-load structure with thick and non 
circular iris, could be treated without need of a three dimension 
program. In the second part, assembly of subsystems is considered. 
An example is given showing the possibility of the method to analyze 
complex system. 
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Figure 3 . Equivalent circuit 
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Figure 1 - General view of a two-segment Wucture 
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Figure 4 _ Vane structure periodically coupled to a waveguide 

Figure 5 _ Dispersion curves for a vane struct,ure 
biperiodically couped to a WaveguIde 

Figure 2 . Dispersion curves for a vane structure 


