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1.0 INTRODUCTION 

In high power microwave tubes the effi- 
cient conversion of kinetic electron beam 
energy to r.f. in a narrow freqency band 
involves complicated nonlinear electron 
dynamics and may involve the spontaneous 
generation of waves at other frequencies. 
This paper describes the adaptation of an 
electromagnetic 2~-3V particle-in-cell code 
MASK to the simulation of such high power 
r.f. sources. In situations where the r.f. 
interaction results in the reflection of beam 
particles, or where there is the excitation 
of multiple modes internal to the microwave 
device, simulations are a new too1 that 
permit a representation of the physical 
processes. In addition, they are capable of 
modeling the transient behavior and not just 
steady state operation. 

One of the applications of MASK at SLAC 
is to aid in the design of a new 150 MW 
Klystron at 2.85 GHz. This work is currently 
in progress and the approach to it is out- 
lined. Preliminary results have been obtain- 
ed for a model two cavity problem and are 
presented. These results illustrate the 
complicated dynamics in the nonlinear regime 
including the presence of reflected particles 
and harmonic generation. The code has also 
been run in the linear regime where good 
agreement has been found with small signal 
theory. 

2.0 MASK SIMULATION CODE 

Electromagnetic particle-in-cell simula- 
tions have been developed by the plasma 
physics community in the last ten years to 
study numerable nonlinear problems of beam 
dynamics, plasma stability, and diode behav- 
ior where analytical or simple modeling is 
difficultl. The essential formulation is for 
the time evolution of an initial value 
problem. The electric and magnetic fields 
are integrated forward in time from differ- 
ence forms of the equations 

lg = CGXFL5/Eo , -g = - TXE , (1) (2) 

subject to the appropriate boundary condi- 
tions. Poisson's equations, V-E = P/El), 
serves as our initial condition. It is 
enforced during the integration. The current 
density J and space charge density p are 
attributed onto the mesh from Eollowing the 
orbits of macroparticles which represent a 

large number of (in the case of beams) elec- 
trons. In turn, the forces acting on a 
macroparticle can be determined by inter- 
polating the electric and magnetic fields to 
its position. 

The version of MASK applied to the 
Klystron problem has two spatial dimensions 
(cylindrical: r-z) and involves the integra- 
tion of all six field components, TM-(ER, E,, 
BF) and TE-(Ee,BR, 
velocity components 

Bz) as well as three 
for the macro-particles 

(VRlV,,V,). In addition to the numerical 
representation of the equations the code 
contains numerous diagnostics. 

These include: 

Phase space plots of particle loca- 
tions. 
Contours of all field quantities. 
Time histories of field behavior at 
specified locations. 
Energy flow. 
Energy equipartition between field 
components and particles. 
Reconstruction of particle trajec- 
tories. 
Fourier decomposition of the wave 
spectrum both temporally and 
spatially. 

3.0 APPLICATION TO KLYSTRON DESIGN 

In applying MASK to Klystron design the 
major difficulty encountered has been in the 
treatment of the drive, idler, and output 
cavities. The natural timescale for the 
simulation is on the order of several thou- 
sand timesteps or - l-10 nsec. The filling 
time of the cavities is much longer. The 
important information to be garnered from the 
code is the voltage and phase of each cavity 
as well as location for achieving maximum 
efficiency. We have therefore sought a 
scheme for imposing the voltage and phase 
close to what the "equilibrium" solution may 
be. There are three ways of doing so: 

1) To treat the full geometry at each 
cavity and to initiate the simulation 
with a prefill of r.f. in the desired 
phase. 

2) To impose on impedance boundary con- 
dition on the drift tube wall corres- 
ponding to the cavity structure and 
to then impose the voltage and phase 
as a boundary condition. 
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3) APPLY the cavity fields by super- 
position from analytical or numerical 
calculations of the cavity mode 
patterns necessitating a numerical 
representative of the problem in the 
drift tube. 

We have discarded the first approach because 
it is wasteful. That is, wave properties in 
empty cavities are well understood and it 
would take memory space to represent the full 
cavity as well as the drift region. We are 
now exploring the two other options. 

The input cavity is perhaps the easiest 
to model because its phase is known and, 
being in the linear regime, the voltage cor- 
responding to a given drive power is easily 
determined. The intermediate cavity voltages 
can be determined from power balance, that 
is, in "equilibrium", fE*Jd3x over the region 
of influence of the cavity must have a time 
average corresponding to the cavity loss. 
With the exception of the penultimate cavity 
this can again be guided by linear theory. 
In the penultimate cavity an iteration must 
be used to find the voltage and phase at 
which power balance is achieved. In the 
output cavity an iteration must be conducted 
to determine the phase and voltage at which 
maximum efficiency occurs. The optimum loca- 
tions of the cavities can be guessed from the 
code diagnostics such as the field time 
histories and current density contours. The 
eventual problem is still quite difficult 
because it requires the determination of N 
sets of parameters, where N is the number of 
cavities in the Klystron. The sets consist 
of (L~,v~,$), the position, the voltage, and 
the phase of each cavity. 

4.0 RESULTS FOR THE TWO CAVITY KLYSTRON 

The initial calculations performed with 
the code on the SLAC IBM3081 have been of 
beam bunching in an idealized two cavity 
Klystron. An electron beam was injected into 
a drift tube with radius rw = 1.35 cm and 
filled to a radius rb = 1.0 with a uniform 
density profile. The beam parameters were 
VO = 80 KV and I0 = 48.3 amps. The back- 
ground guide magnetic field Bzo = .135 
Tessla. In these simulations the beam injec- 
tion boundary was fixed at zero potential as 
was the boundary at the output end. The 
simulation was performed on a 128 x 27 mesh 
with AZ = .Og cm and AR = .05 cm. The time- 
step chosen was 8.75 x lo-l3 set which cor- 
responded to 400 timesteps per cycle of the 
drive wave at 2.85 GHz. The first set of 
studies was for beam bunching by the drive 
cavity operating at various voltages. This 
cavity was centered 3.0 cm away from the 
beam injection plane and had a gap width of 
0.63 cm opening onto the drift tube. Figure 
1 shows the response of the beam particle 
momentum as a function of axial distance for 
various applied voltages in the driving gap. 
These phase space plots were all taken at the 
same phase relative to the drive field at 
times when the transient response had died 
out. The case of zero drive voltage is 
included for comparison. 
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It shows no perturbation other than the space 
charge depression at the injection and output 
ends. The cases of 7.5 KV and 15.0 KV 
correspond to the linear theory for a cold 
beam with axial motion only. The diagnostics 
indicate that the E, Field component for 
these two cases has a simple sinusoidal time 
dependence at the drive frequency. In 
contrast the 30 KV case exhibits some 
nonlinear behavior while at 60 KV particle 
trapping can be seen and it is also evident 
that waves have propagated 6ack upstream. 
The wavelength of the space charge waves for 
drive voltages at 30 KV and below is in 
excellent agreement with linear theory. The 
60 KV this is only approximately true. 

We chose to examine the 30 KV case in 
some detail and to use that as the drive 
voltage for the two cavity study. The reason 
was that good spatial bunching was observed 
without the generation of spurious modes 
above the cutoff in the drift tube. In 
Figure 2 the phase space for the 30 KV case 
is shown as a function of time in increments 
of a tenth of a wave period. 
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voltage of 90 KV and a phase of -90'. The 
choice of phase was dictated by linear theory 
for the 30 KV case and corresponded to the 
phase when the beam bunch passed the output 
cavity as can be deduced from Figures 2 and 
3. The resulting efficiency was - 4%. We 
ha& found that the initial voltage chosen 
was probably to high and that it resulted in 
strong particle trapping and particle reflec- 
tion as shown in Figure 5. 

Gap 1 Gap 2 
1.35x10-2n I 1 -. 1 I L 8 1 - 

Using the information in Figure 2 it is 
possible to deduce the phase velocity of the 
space charge wave by following the advance of 
crests in the velocity perturbation. The 
result is again in excellent agreement with 
linear theory. 

The composite in Figure 3 shows the, 
density and velocity perturbation for the 30 
KV case at a point in time when the space 
charge bunch is passing the location of what 
will be the output cavity. 

1.35x10% . ' ' ' ' ' ' ' ' ' ' ' 
30 Ku 1 

Axial Position .llh 

Fig. 3 Bunching in space and contour Of axial driving (EZ) 
electric field. 

For (contrast the density plot for the 
undisturbed beam is also shown. A contour of 
the driving electric field, E,, 1s also 
shown on the figure. As can be seen quite 
plainly, the particles at larger radius are 
more strongly influenced and hence more 
tightly bunched. The induced electric field 
at the location of the output cavity is shown 
in Figure 4 as a function Of time. 
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Fig. 4 Probe signal from 30 KV drive indicating strong 
generator of the third hamiC. 

There is no longer a simple sinusiodal 
variation as for the lower voltage cases. A 
strong third harmonic is generated, but its 
frequency is still below the cutoff for the 
drift tube. At 60 KV higher harmonics are 
excited and travel back upstream. 

To begin the iteration process for 
determining the parameters of the output 
cavity, located at z E 8.5 cm, we chose a 
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Fig. 5 Particle dynamics in the presence of an output cdvlt~ 
It 90 Kv and 1 phase of -90". 

Again wave propagation from higher harmonics 
in the upstream direction was observed. The 
presence of the output cavity retarded the 
velocity of the space charge bunch 
significantly. We have at this stage lowered 
the output voltage to 80 KV and tried phases 
of -100" and -80'. These yielded 
efficiencies of 8% and >l% respectively. 
Further work is still in progress. 
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