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Abstract 

This paper represents a new computer calculating 
method for cylindrical symmetry cavities. This method 
can calculate not only the fundamental mode and longi- 
tudinal modes but also the transverse higher modes. 

The Hertz vector is used as fundamental quantity 
and the separated variable method is applied. 

An empty cylindrical cavity has been calculated. 
lhe calculating result is in accord with analytic so- 
lution fairly well. 

Introduction 

The reentrant cylindrical cavities is used in 
high power klystron, some solid-state devices and 
electron storage ring. The calculating method of this 
kind oflctvities has been introduced by many 
papers. - 

In recent years, the computer code SUPERFISH is 
widely,used for axisymmetric cavities of arbitrary 
shape, which is very succesful, but the SUPERFISH can 
calculate the axisymmetric rf field only, i.e. for 
aE/a$ = O,aH/a+ = 0 condition. On principle, it can 
evaluate longitudinal higher modes and cannot evaluate 
transverse higher modes. Of course, we can use finite 
element method to calculate three dimensional field, 
but the capacity of computer required will be too 
large and the expenditure of computer time is too 
great. It is not suitable for engineering use. 

Principle and Fundamental Equations 

In SUPERFISH and other calculating methods, in 
general, BE/S+ = 0, aH/a+ = 0, i.e. for axisymmetric 
fields was assuned. In this condition, along 41 direc- 
tion fields are not varied, so the three dimensional 
problem can easily represented by two dimensional 
fields and two independent sets of solutions can 
exist: TE mode having three nonzero field components 
EOsHrsHzs and the TM mode Ho, E,,E,. In 
each set, the fundamental quantity H or E only have 
one angular component. So it is very convenient to 
choose H = Ho, E = E+ as fundamental quantity to 
calculate the TM and TE modes. 

If aH/&$,aE/a$ f 0, fields are not axisymmetric, 
and with angular variation. There are five fundamen- 
tal variable quantities in TM and TE modes. H and E 
no longer have one angular component. In this case, 
it isn't convenient to choose Ho or E,+ as funda- 
mental quantity. However, the variation of fields 
along angular direction is periodic, the variation of 
phase is 2na a turn, n is an integer, representing the 
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variation period, n = 0 represents no variation along 
angular direction. So the Separated Variable Method 
can be applied to separate the angular quantity thus 
simplify the three dimensional problem to two dimen- 
sional problem yet. In addition, if we use the Hertz 
electric vector and Hertz. magnetic vector as fundamen- 
tal quantities, we can find the five fundamental quan- 
tities easily. So this method may be called "The Sep- 
arated Variable Hertz Vector Method". 

For TM modes, the Hertz electric vector can be 
used. In cavity space, the Hertz electric vector wave 
equation is: 

V2ire + K2iie = 0 (1) 

where K2 = u2clJ 

and 3 = + (grad divd, + K2fie)ejwt 

6 = jwroti+ieejwt 

(2) 

(3) 

For TM modes, the Hertz electric vector lies along z 
direction 

“e = ‘ez 

n 
eQ 

= n = 0 er 

Thus the H, = 0 condition is satisfied. 

Then 

Er = $ 
a%, jwt lane ' 

araze Hr = jwrFeJot 

H$ 
arr, jut(,) =-juFe 

E z 

Like this, for TE modes, the Hertz magnetic 
vector wave equation can be used. 

V2frm + K2jtm = 0 

B = jwrot3 jwt m 

(4) 

6 = -+ (grad div fim + K2fim)ejot 

(6) 

(7) 

(8) 

For TE modes, assuming Hertz magnetic vector lies 
along z direction i.e. 

'rn = Rmz 

II =I[ =o 
mr m$ 

(9) 
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On this condition, E, = 0 is satisfied. and 

E 1 3% jwt jut 
r =jwr re 

E$ 
8% jwt =-jwFe 

H+ = - 
1 1 a2gm 

urT$-z” 
jot c1ol 

HZ = - 1 a2n, 
+-- 

az2 

E = - 
rm jw : U m 

E+m = 
ahI - jwF 

H 
1 a2y, -- 

rm * - u azar 

HC 
1 " 3% ax--- pt a2 (18) 

Han = - 

Hertz vector fi is a function of r, a, and X$ three 
variables, applying Separated Variable Method, let 

II = OIJ (11) 

U is a function of r and z. 
@ is a function of $I. 
Insert (11) into wave equation with cylindrical 

coordinate, we can obtain two formulas. 

1 a -- r 2 + 23 + (K2 rar ar az2 
-$“=(I 

r2 
(12) 

2 
22 + ,2q, = 0 

v2 
(13) 

The solution of equation (13) is 

4 = A cos (II+ + en) 

Choosing the reference plane appropriately, we 
can make $u = 0, if we consider field distribution 
only, we can put A = 1, then 

II = u cosn‘+ 

For TM modes 

Er = Ermcos no 

E. = E4msin n$ 

EZ = Ezmcos n$ 

and 

E 1 a2ue =-- 
rm E araz 

n aue -- E+~ = - .s a2 

+ K2Ue) 

For TE modes 

Er = Ermsin n$ 

EO 
= Eticos n+ 

EZ = 0 

(14) 

Hr = Hrmsin n$ 

H9 
= - H+mcos n@ (15) 

HZ = 0 

H =- 
rm jco';' Ue 

aue 
Hti = - jWar (16) 

Hr = Hrmcos n$ 

H+ = Htisin n+ 

HZ = Hrmcos n$ 

(17) 

It is convenient obviously to apply separated 
variable Hertz vector method and choose U as the 
fundamental quantity. The crux of the problem is the ) 
treatment of boundary condition. 

The cylindrical double reentrant axisymmetric 
cavities is symmetry from left to right and from up to 
down. So calculating l/4 section is enough. 

For z = 0 axis, the field distribution can exist 
in two possible forms, odd symmetry or even symmetry. 
At z = 0 plane the boundary condition is 

II = 0 (odd symmetry) 

au/a2 = 0 (even symmetry) 
(19) 

At r =Oaxis,ifn= 0, based on the symmetry 
condition of up to down, so 

au/at- = 0 (20) 
If n f 0 from (12), because the field value at r 

= 0 axis is definite, at r = 0 axis 

u- 0 

From the basic physical properties of metallic 
surface, the boundary condition is 

zxE+=o 

;: *k=o 
(21) 

(22) 
Similarly, 

(24) 

z represents the unit normal vector on' the 
surface. i.e. the Hertz electric vector and electric 
field is perpendicular to metallic surface and the 
Hertz magnetic vector is parallel to the metallic 
surface. 

For the TM modes, the fie is parallel to z axis. 

On the other hand, ?r is perpendicular to metallic 

surface. If the met:llic surface is not perpendicular 
to z axis, the two conditions are mutually exclusive 
thus U must be equal to zero at this surface. For 
metallic surface perpendicular to a axis, according to 
E rm = E$m = 0, from equation (16) aU/az = 0. 

For the TE modes, 'rn is parallel to z axis. If 
the metallic surface is not parallel to z axis, the 
condition of fi m parallel to z axis and metallic 
surface are mutally exclusive, thus U must be equal to 
zero at this metallic surface. For the metallic 
surface parallel to z axis, according to Elbrn = 

Hrm = 0, from equation (18) aU/ar = 0. 



Numerical Calculation 

According to the principle and fundamental equa- 
tions mentioned above, we can perform the numerical 
calculation. In this paper the differential method is 
accepted. We use the equal mesh, five point differen- 
tial pattern and iterative method. 

Each mode corresponding to a linear equation, all 
the nodes compose a set of linear equations. To rep- 
resent as matrix form 

AU = 0 (25) 

A is the coefficient matrix. The characters of A 
are sparse, most of the elements are zero and the ele- 
ments on diagonal line are superior in numbers, and 
all the elements on diagonal line aii > 0. It can 
be turned to a symmetric matrix approximately, so the 
successive over relaxation method can be used. 

The resonant frequency of each mode can be calcu- 
lated with Rayleigh quotient. Multiply U both side of 
equation (12) and intergrate in the whole region 

For TM Modes: 

-,s”e(2 ’ sue f .f$ - d U )dS +-- 
K2 = 

r ar r2 e 
(26) 

For TE Modes: 

K2 = 

-,s"n(-$ 

(27) 

L 
LltdS 

The resonant frequency f = -!$ 

Where c is the phase velocity in vacuum. 

The field values can be derived from Ue,U, 
with formulas (15) - (18) directly. 

We used double iterative method. The initial 
value of IJ and K is given by supposiiton at beginning, 
then we calculate the new value of U with Successive 
Over Relaxation Method, and get the new value of K 
from Rayleigh quotient. To do this with repeat circu- 
lation up to the required accuracy is obtained. 

For calculating the eigenvalue with iterative 
method, the iterative process is always convergent to 
the 1st eigenvalue. In order to calculate the high 
order modes, we want to find the high order eigne- 
values. 

Let V(“) be the n dimensions vector space, the 
fundamental vector is composed of all the eigenvectors 
in Matrix A. 

For the orthogonal character of eigenvectors in V(") 
space. 

iSi 
Ci = - 

pi 
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In calculating process, at first the initial 
vector is given and the 1st eigenvalue "VI is found. 
Then cl can be found from (30). At the next step, let 
"v-cIdl be the initial vector and the 2nd eigenvalue 

62 can be found. 

Similarly, let u" - cl61 - ~~$2 be the initial 
vector,+U3 can be found. Step by step we can find the 
higher eigenvalue in due order. 

The Result of dalulation 

For checking this prescribed calculating method, 
we calculate an empty cylindrical cavity with 
a relative coarse mesh. The calculating result is in 
accord with analytic solution fairly well. It proves 
that this calculating method and formulas mentioned 
above are corrected and feasible. 

Table 1. The Resonant Frequency of Cylindrical Cavity 

(D-76 mm; L=68 mm) (mesh size: 2x,2 mm) 

Mode Analytic Calculating Calculating 
solution (MHZ) Value (MHz) error 

TMOIO 3019.424 3016.7896 8.72x1O-4 

TM012 5343.1526 5333.6836 1.77x10-3 

TMozo 6930.237 6966.8643 5.29x1(Y3 

TMIIO 4810.99 4805.9360 1.05x10-3 

TM112 6525.178 6520.0591 7.84~10-~ 

T?~IZO 8832.28 8690.2617 1.6~10-~ 

TEoll 5291.82 5276.0342 2.98x1O-3 

TEIII 3193.779 3193.4961 8.86x1o-6 

T%II 4422.57 4421.5918 2.21x1o-4 

TE112 4891.41 4971.9780 1.89x1O-3 

TE212 5847.10 5837.4873 1.64~10-~ 

TEOIZ 6525.154 6527.6670 3.85~10-~ 

TE312 6879.40 6868.6016 5.o5x1o-3 

TE113 7004.592 7002.7582 2.62~10-~ 

TE313 8458.08 8433.3652 2. 92x1o-3 

Conclusion 

This paper represents a computer calculating 
method for cylindrical cavities. This method can not 
only calculate the fundamental mode and longitudinal 
higher modes but also the transverse higher modes. 
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