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Introduction 

The use of segmented rare earth cobalt (REC) 
rings to produce high field, high quality quadru- 

poles to focus charged particle beams1 is increa- 
sing. Current designs are based on the properties 
of 2-D rings with continuous rotation of the easy 
axis. Since many applications involve elliptically 
shaped beams, in this paper we explore the possi- 
bility of using elliptically shaped 2-D rings as a 
means of reaching higher fields with less REC 
material. After showing that such improvement is 
possible, we investigate the modifications required 
by segmentation numerically. 

Continuous Rotation of Easy Axis m 
O(r,Q) = -p Re 1 rneinPG 

n=O n We start our analysis with a simple derivation? 
of the multipole behavior for a circular ring of 
inner radius a and outer radius Xa, where the easy 
axis angle is chosen to be 

where 

a= (m+ 1)9 +;. (I) 

Here m is an integer (m = I for dipole, 2 for quad- 
rupole: 3 for sextupole, etc.) and 0 is the azimu- 
thal angle. The scalar potential is given, in 2-D, 
by 

Gn =;,, 
dx dy eia 

(x + iy)n+l 

The region of integration in (9) is the cross 
section of the elliptical ring. 

O(r,@) = $/"a" RdR ,$ de ',~'~~,~) 

(r cos(a - $) - R cos(a - 0)) 

r 
2 + *2 _ 2rR cos (o 

- 0) 

= __ 2: Re ita RdR 1," de ( Refe y,,lJ C2) 

where p is the remanant field strength (magnetiza- 
tion per unit area). For r < R the integral can be 
expanded to obtain the mutlipole series 

Q(r,9) = - $ y rnein$ ]",a!? RdRdB eia(Reie)-n-l. 
n=O 

(3) 

The form of easy axis rotation in (1) leads directly 
to 

@(r,$) = p 
m sin * 

(73 - 1) am-l 
(1 - $1 . (4) 

The field is then a pure m-pole, with maximum field 
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strength at the bore given by 

B,(a) = p 

3623 

For m=l, 2, 

liptical rings we start with For el 
form 

the reduced forms are 

RI(a) = p llnh (6) 

B2(a) = 2p(l -t). (7) 

(3) in the 

(8) 

(9) 

We will choose the geometry of the elliptical 
ring to be given by 

14wc1 , OC$C 2n (10) 

where 

x = aw cos Q , y = bw sin$ (11) 

Thus, we are choosing similar (rather than confocal) 
ellipses, with ratio of minor to major axis being 
b/a, and outer to inner "diameter" being X. The 
area element in (9) can now be written as 

dx dy = ab w dw d$ (12) 

leading us to 

Gn = GF 4" fj ii? @ (a cos J, :" b sin JI )n+l 

(13) 

We will now choose 

a = (m+ 1)JI +'!$- (14) 

and change the variable from $I to the complex 
parameter 

1‘The formulation of (1) - (9) for the circular ring 
parallels that of Halbach in Reference 1. 

OOIB-9499/83/0800-?6:3$Ol .OOO 1983 IEEE 

© 1983 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



3624 

z = e-w , d$=+ 

The path of integration for z is now the unit circle 
in the complex plane. Thus we can write 

Gn = 2rr(nab- 1) (1 -&I 

4% 
a-m-1 

I(; (z +;, +; c;- z)ln+r 
(16) 

where the integration over z is in the counter 
clockwise direction. If we set 

E =c& 

we can rewrite (16) as 

(17) 

G= ab 
n 2n(n - 1) ( * Y+l a (1 - -$I 4 (ld: y$ 

(18) 

The possible poles of the lntegrand are at z=O, 

*d'2. Since E < 1 for b < a, only the pole at 
z=O lies within the unit circle. For m=l only the 
term ~~ gives a non-vanishing value. For m=Z, only 

the terms n=O (constant potential, and therefore not 
significant) and n=2 give non-vanishing values. For 
higher values of m contributions come from n=m, m-2, 
m-4, etc. 

We can therefore write 

Cl = iab (&)2 iln 1 

G =o 
n 

, all other n 

and 

m=2 

C2= iab ( &)3(1-$ 

(19) 

(20) 
Gn = 0 , all other n > 0. 

From (a), we obtain the result for the maximum field 
at the bore (along the x axis, so that r=a). 

Dipole 

B1 = P 4ab LnA 
(a + b)2 

(21) 

Quadrupole 

f$ = P 
16a2b ( 1 - ;I 

(a + b13 
22) 

One of the important consequences of (21) or 
(22) is that a value of b/a different from 1 leads 
to a change in the field strength. For example, if 
A and a are kept fixed, the dipole field strength In 
(21) will reduce as b is decreased. For b=a/2, the 
dipole field strength will be decreased by a factor 
8/9, using only half the volume of REC. 

For the quadrupole, the field strength 'actually , 
increases for a while as b is decreased, reaching a 
maximum enhancement factor df 32127 for b-a/2. Thus 
the optimum configuration, involving half the FXC 
volume, produces a maximum quadrupole field 

D2(a) = $$ P (1 -iI , (23) 

in contrast with the value in (7) for the circular 
ring. 

Segmented Ring 

The analysis of a segmented elliptical ring is 
far more complex, requiring numerical computation 
for finite values of s. The relevant formulas are 
most directly obtained starting from (9) by changing 
the scales of x and y and then rotating' the axes for 
each segment. We shall carry through the analysis 
for N touching trapezoidal segments, as shown in 
Figure 1 for N=8. 

Y 

Figure 1. Elliptical Ouadrupole With 
8 Trapezoidal Segments 1 

Let 

x=au , y=bv (24) 

to obtain 

Gn=g f 
dudv 

e 
j=l (au + ibv)"+' ' (25) 

where a. is the (uniform) orientation of the easy 

axis inJthe jth trapezoidal segment, as shown in the 

u-v plane In Figure 2. 

We have therefore achieved our desired result, at 
least for a dipole or quadrupole field; that is, we 
have provided a prescription for the easy axis rota- 
tion (14) which leads to a pure multipole structure 
for the field. 
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Figure 2. Elliptical Quadrupole With 
N=8 Transformed to u-v Plane 

We will now rotate the j th segment by the angle JI 
the mid-angle of the segment, such that 

II' 

u = s CO8 J, 
j 

- t sin 6 
j (26) 

v = s sin $ 
iI 

+ t cos Q 
1 

d,, dv = ds dt. 

This leads to 

G ab =_ 
n 2lT 

f eiaj i-;;j ds ir::;;j dt 1 
j=l 

1 

[s(a cos Jlj+ib sin JI ) + t(ib cos $j-a sin qj)l 
n+l ' 

J 

(27) 

The integrations over t, and then s, can be readily 
performed, leading to 

Gn = n+l (1 - 
$1 ,E, q) 

(28) 

where 

Q(n) = .ialcos$ 
II j fbj + ;I 

X wtej - $j) - fWj ++j)l (29) 
with 

f(6 ) E (eiB + se-%)-l (30) 

and 

f"(6 1 = [f(B)l” . (31) 

The multipole component of the field, evaluated at 
the bore (corresponding to r * a cos $o) is finally 

B,(a cos +o) = p (1 - 1 ) 
Xn-l 

J(n) (32a) 

where 

,(*I = 
(1 +E)“(l - E) COS*-‘4 N 

Zni(n - 1) ' J1 Q;") (32b) 
.i 

For n=l, one must take the limit as n + 1. 
Specifically, one has 

Bl(a cos +,) = pa* X J 1) 

where 

C(l) = Lim (n-l) Jcn) 
II+1 

As a check, it is readily seen, for 

E=o , a.= 
J 

%+ (m + 1)ji. , 
J 

(32c) 

(32d) 

(33) 

% =$ , oj=& 

that (32) reduces to (5) multiplied by 

T2 = C0s2 ; ~ , 
al 

-k 

(34) 

Computation 

We have written a program which searches for 
the values of $ 

j' 9 aj 
which lead to the vanishing 

of 

,(*I , n-m+l, m+2, . . . K-Em-1 

for a variety of values of b/a. Clearly the 
symmetries shown in Figs. 1 and 2 are appropriate to 
obtain the proper values in the 2nd. 3rd, and 4th 
quadrant from those in the 1st quadrant. 

Table I-III gives the values of $ 

.Jcm) for $ = 1.0, .8, 

j, 6,' aj and 

.6, for quadrupoles made up of 

8, 16, 32 trapezoidal segments respectively. Tables 
IV, V give the same information for dipoles for 8, 
16 trapezoidal segments. 

Discussion of Numerical Results 

It is apparent from Table I that the 8 segment 
quadrupole fails to give an increase in the quadru- 
pole strength at the bore as b/a decreases. The 
reason can be quickly traced to the rapid growth of 
4 as b/a decreases, with the resulting decrease in 

0 
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the bore opening. This effect is somewhat reduced 
for 16 segments, where we have obtained a 5% in- 
crease in the quadrupole' strength at the bore for 
b/a = .8, and further reduced for 32 segments, whe're 
an increase in the maximum quadrupole field of 11% 
is obtained near b/a = -7. Clearly, one needs a 
very large number of segments to approach the 
limiting increase of 18.5%. 

The situation is similar for the elliptical di-8 
pole where, for 8 segments, the bore opening is sig- 
nificantly reduced. Nevertheless,.for either seg- 
mented quadrupoles or dipoles, one has the opportu- 
nity to reduce the amount of REC significantly by 
using an elliptical design. 

Other configurations are possible, and should 
be pursued according to the requirements of various 
applications. For example, one may keep all values 
of Q 

rl 
the same, and adjust the c. for j = 1, . . . . 

I 
N - 1 to eliminate the multipoles n = mt2, m+4, . . . . 
5 
mt;-2. Clearly one has non-vanishing umltipoles 

n=m+ 5 1 
m-tN+z, . . . . m+N-2 compared with the 

circular case, but the field at the bore is larger 
and the segments are more nearly equal in Size. 

Another option is to select the parameters (a , and 

possibly oj) to minimize the r.m.s. field at !ome 

intermediate radius. Still another option is to use 
non-touching segments. The preferred option should 
clearly be determined by the requirements of the 
application, i.e. overall field strength needed, 
multipole purity desired, useful aperture required, 
overall volume contraints, etc. 

Summary 

that a 2-D elliptical REC ring 
produce a pure quadrupole or a 
and that the limiting quadrupole 

We have shown 
can be designed to 
purebdipole field, 
field at the bore can be increased by a factor 32/27 
over the circular ring for a major/minor axis ratio 
of 2. We have also obtained the multipole field 
spectrum for trapezoidal segments and developed a 
computer program which adjusts the easy axis orien- 
tation and segment angle openings to cause several 
of the unwanted multipole coefficients to vanish. 
Numerical results are presented which show that a 
large number of segments is needed to approach the 
results for the elliptical case. 
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