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A LINEAR AND NON LINEAR ANALYSIS OF HIGH POWER RF AMPLIFIERS* 
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Sumnary 

After a survey of the state variable analysis 
method the final amplifier for the CBA is analyzed 
taking into account the real beam waveshape. 

An empirical method for checking the stability 
of a non linear system is also considered. 

Introduction 

The continuous demand for increasing the number 
of accelerated particles, both in linear and circular 
math ines, results in the need of very sophisticated 
high power RF systems. 

Power levels of several hundreds of kW per unit, 
stringent stability requirements, low output imped- 
ante , low noise, reliability, control capability, 
wide bandwidth etc.. . demand a very careful non 
linear analysis, which must include the effect of 
beam loading . 

Beam induced voltages in accelerating cavities 
have been extensively studied in connection with beam 
instabilities, but very little attention has been paid 
to the effect of the beam on the cavity driving sys- 
tem. 

‘To consider the beam as a simple “impedance,” as 
has been generally done in the past, could be 
justified by assuming that the final amplifier is a 
linear device and that the beam current is negligible 
when compared with the tube current. With the demand 
for higher beam currents and large power amplifier, 
this simple assumption is no longer valid.1 

In this paper an iterative method for calculat- 
ing the beam loading effect is developed where the 
beam is schematized as an ideal current generator 
connected to the accelerating gap and the actual 
shape of the beam current is taken into account. 
This method of calculating is then applied to a net- 
work mesh representing the equivalent scheme of the 
whole circuit where the actual characteristics of the 
tube are to be taken into account. 

The State Variable Approach 

In principle any of the well known methods can 
be used for characterizing the behavior of an 
electrical network, but for non linear feedback sys- 
tems the state variable method is preferable for the 
following reasons : 

a. It is applicable to any electrical network 
without any restrictions. 

b. The derivatives of the input stimuli 
(voltages and currents) do not appear in the final 
differential equations. 

c. Both, voltage and current, generators can be 
simultaneously used in the same network without any 
special transformation. 

*Work performed under the auspices of the U.S. De- 
partment of Energy. 

d. Each of the equations that describes the be- 
havior of the network can be reduced to the “normal 
form” as indicated. 

. 
‘k = Fk(ql...qn,sl...sm,t), (11 

where qk are the chosen state variables, s are the 
impressed stimuli (voltages and currents), t is the 
time, and, in general, Fk’s are non linear functions 
of the previous variables. 

The state variable method, extensively treated 
in many excellent books and articles, 2 can be 
sumuarized as follows: 

1) The voltages across the capacitors and the 
current through the inductors are normally chosen as 
the state variables of the system; polygon of capaci- 
tors and stars of inductors, obviously, reduces the 
number of independent variables. Sometimes a differ- 
ent choice of the state variables might be more suit- 
able; an example is given in the Appendix. 

2) As many nodal and mesh equations are written 
in order to match the number of independent 
variables, and, it is clear, only the first deriva- 
tive of the variables are implied. 

3) The system obtained after the reduction to 
“normal form”, of the various equations, can be 
integrated numerically with the standard methods now 
available. 

Norma lly , the third point presents the most dif- 
ficulty, but, fortunately, this is not our case. In 
dealing with the power RF amplifiers the non linearity 
is introduced by the power tube characteristics, 
including the occurrence of the cut-off. Recognizing 
that the tube current is controlled by the voltages 
developed across the inherent tube capacitances, the 
non linearity cannot, therefore, involve the deriva- 
tives of the state variables. This means that the re- 
duction to “normal form” of the state equations can 
be obtained in a very straight-forward way with 
Kramer’s rule. 

A Typical Example 

As an example, an analysis is made for a simpli- 
fied model of the CBA accelerating final amplifier. 

Due to the very special performance required, 
the accelerating cavity is driven with a cathod fol- 
lower amplifier.3 For the purpose of illustrating 
the procedure, a simplified equivalent circuit will 
be used. As it should be noted, the analysis is not 
limited by the circuit complexity. The following 
“reasonable” simplifications are introduced: 

1) A parallel RLC circuit simulates the behav- 
ior of the cavity in the neighboring of the dominant 
mode. 

2) The driving amplifier is schematized with a 
voltage generator and its own output resistance. 

3) The biases are schematized with idea1 
batteries. 

With these assumptions the circuit to be 
analyzed is as shown in Fig. I. 
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Fig. 1. Simplified scheme of the accelerating 
amplifier. 

The network considered has four capacitors and 
two inductors; therefore,, there are six state 
variables. The variables are designated by Y(j). 
For the particular case in Fig. 1, we have that Y(2) 
+ Y(3) = ~(6) and the number of independent variables 
are then reduced to 5. BC indicates the beam current 
(that is assigned). TC indicates the tube current 
that depends upon the voltages applied to the tube 
which are a consequence of the driver, bias voltages 
and beam current. 

The "state equations", three for the nodes and 
two for the meshes, are written as follows: 

(Y(l)-VD)/RG+Y(4)+CG*t(l)+(Y(l)-(VB+Y(2)+Y(3)))/R=O 

(Y(l)-(VB+Y(2)+Y(3))/R=CP*('Y(2)+?3))+C*t(2) 

Y(3)/RK+Y(5)+CK*'Y(3)=C*'Y(2)+TC-BC 

LG*'Y(4)=Y(l) 

LK*'y(5)=Y(3). 

Simplifying the notations we set: 

Fl=(Y(l)-(VB+Y(2)+Y(3)))/R , F2=TC-BC-Y(3)/RK-Y(5) 

F3=(Y(l)-VD)/RGtY(4) and F4=(CP+C)*CK+CP*C. 

Substituting and reducing to "normal" form we obtain: 

t(l)=-(Fl+P3)/CG 

t(2)+(CK*Fl-CP*FZ)/F4 

;(3)=((CP+C)*F2+CaFl)/F4 

+(4)=Y(l)/LG 

+(5)=Y(3)/LK 

(2) 

The system can be solved numerically as soon as the 
beam and tube current are specified. With a high de- 
gree of accuracy we can assume that 

BC=4*BCP*(+ 4 (I- y), 

BC(t)=BC(t+T), and BC 2 0.0 

Where T is the RF period, d is the beam duration, t 
indicates the time (starting from zero at the 
beginning of each cycle), t0 is the delay of the beam 
at the beginning of the RF cycle and BCP is the beam 
peak current. 

The tube current characteristics could be stored 
in the computer and read at each step of the integra- 
tion. In many cases a very good approximation can be 
reached using the formula 

TC=G*(VP-Y(3)w*Y(2))a=G*VTa and 

TCzO.0, for VT< 0.0 and for VP-Y(3) <_ Y(2), - 

where G and a are constants that depend upon the 
tube. 

The,system (2) was integrated with a fourth order 
,Runge-Kutta method on a CDC-7600 computer for the 
following value of the parameters: 

CK=12E-9, LK=3.82E-5, RK=6000, C=250E-12, cP=250E-12, 

R=500, RG'700. LG=2.29E-4, CG=2E-9, VP=12000, 

VB=350, G=8.21E-5, ~=32.7, az1.5, 

l=4.25E-6, tO=d=T/3, BcP=36, VJJ=lE4*SIN(Zrrt/T). 

The results are summarized in Fig. 2. 
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Fig. 2. Gap voltage, beam and tube currents after 
99 periodsof RF and beam exitation. 

The dashed line represent the beam current, 
reversed in sign for clarification. The solid line 
indicates the current in the tube when the cavity is 
tuned to its resonant frequency. The dotted line in- 
dicates the current that would flow in the tube if 
the cavity were tune to a lower frequency in order to 
compensate for the quadrature component of beam cur- 
rent. It is evident that there is a reduction in the 
peak tube current while the average tube current is 
only slightly affected. 

We note that the gap voltage is essentially 
sinusoidal (due to filtering action of the cavity), 
while the tube current is badly distorted. This 
clearly demonstrates that the beam cannot be 
considered as a "simple" impedance, since the voltage 
across the gap has essentially no higher order 
Fourier frequency components, but the same cannot be 
said about the tube current. 

The resistor R (Fig. 1) provides the damping 
that prevent the tube from oscillating. A larger 
part of the phase shift between the input and output 
voltage is the result of this resistor and the 
capacitance from grid to ground. 

Very often the beam dynamic requirements dic- 
tates an overall maximum value for the output imped- 
ance of the amplifier-cavity system. For non linear 
systems both the definition of output impedance and 
the use of the superposition principle become meaning- 
less. In this case the designer should interpret the 
given "output impedance" as a parameter indicating 
the order of magnitude of the beam induced voltage 
that is tolerable and only the fourier analysis of 



the resulting waveform will tell if the beam dynamic 
requirements are met. For this case a correct opera- 
tion of the cathode follower at higher frequencies is 
guaranteed by the capacitor CP. This capacitance is 
made equal to the grid cathode tube capacitance to in- 
sure that the feedback ratio 8 is greater than 0.5. 

An Empirical Stability Criterion 

It is well known that a linear time invariant 
system is stable if, and only if, all the eigen value 
of the state variable matrix have negative real 
parts. On the other hand, to determine whether or 
not a non linear system is stable might lead to an aI- 
most intractable mathematical problem. 

For the designer it is important to know if a 
system is stable over a band width equal to a few 
order of magnitude of the operating frequency for 
which the system is designed to work. If in the ac- 
tual system an oscillation were to occur at a fre- 
quency far removed from the operating frequency, it 
would be a relatively simple matter to damp this os- 
cillation without effecting the fundamental character- 
istics of the design. Accordingly the procedure to 
check empirically the stability, using the previously 
derived network equation could be as follows: 

1. The driving voltage (or current) and the 
beam current are set equal to zero. 

2. Some reactive elements (usually capacitors) 
are given initial conditions with values very much 
larger than those normally reached under the design 
working conditions. Moreover, those elements should 
be chosen in such a way, as to be able to exite all 
the modes of the network to be examined. 

3. The integration of the system is performed 
with a step (fixed or variable) that is correlated 
with.the frequency range to be examined. Then if the 
computer answer goes to zero after a reasonable time, 
the system can be considered as "practically" stable. 

It is obvious that the above test is only 
empirical, and that, moreover, it’s accuracy depends 
upon the integration technique. 

Appendix 

For analyzing the circuit indicated in Fig. 3, 
we could assume that the currents 11 and I2 in the 
inductors, and the voltage V across the capacitor are 
the state variable characterizing the system. 

Fig. 3 

With this choice the solving system cannot be 
written in "normal form" because the derivative of 
the input current appears explicitly as follows: 

. 
11 = Al'; + B'V 

. 
I2 = &?.'I-B'V 

t = (1-11)/C, 
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where Al = L2/(Ll+L2); A2 = Ll/(Ll+L2j and B = 
l./(Ll+L2). 

The introduction of the first derivative of the 
input could be easily avoided with a different choice 
for the state variables as follows: 

If we put ql = 11-Al'1 and q2 = 12-A2'I then the 
above systems becomes, 

;rl = B'V 
I 

&! = -B'V 

G = (A2'1-ql)/C, 

where the first derivative of the input does not ap- 
pear explicitly. 
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