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A PLASMA WAVE ACCELERATOR - SURFATRON 1 
T. Ltatsouleas and J. M. Dawson, Dept. of Physics, University of California 

LOS Angeles; California 90024 

The limitation on the total energy gain possible 
with recent plasma accelerator schemes such as the 
beat-wave accelerator of Tajima and Dawson is overcome 
by the Surfatron. By introducing a perpendicular mag- 
netic field it is possible to keep particles in phase 
with the laser-induced plasma waves and hence acceler- 
ate them to arbitrarily high energy. 

Recently there has been a great deal of interest 
in using laser-plasma interactions to accelerate par- 
ticles to high energies more rapidly than the 20 MeV/m 
to which linear accelerators are currently 

limited. 1 The beat-wave accelerator is one scheme 

proposed by Dawson and Tajima2 to excite large ampli- 
tude electrostatic plasma waves which can accelerate 
particles. Whereas particles in the beat-wave accel- 
erator can gain'only a finite amount of energy before 
they become out of phase with the beat wave, by intro- 
ducing a perpendicular magnetic field the particles 
are deflected across the wave front thereby preventing 
them from outrunning the wave. The particles may be 
accelerated to arbitrarily high energy as they ride 
across the wave fronts like surfers cutting across the 
face of an ocean wave (see Fig. 1). 
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Fig. 1 An electron trapped by a potential trough mov- 
ing at Vph sees an electric field y V 

ph ph 
xB/c 

which accelerates it across the wave front. 

Sugihara and Midsuno3 and Dawson et al. 4 have 
shown that classical particles trapped by a perpen- 
dicularly propagating electrostatic wave are accelera- 
ted until they de-trap near the E x B velocity (cE/B). 
In this letter we consider the relativistic effects 
introduced when the E x B velocity is greater than the 
speed of light (i.e., E > B) and when the wave's phase 
velocity is not small compared to c. 

We begin by giving a general treatment of the 
trapped particle motion analytically and numerically, 
followed by application of these results to the beat 
wave example. We consider a plane wave electric field 
and uniform magnetic field 
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The equations of motion for a particle of charge q and 
rest mass m are given by 
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where wc is the non-relativistic cyclotron frequency 

qB/mc and Vx and Vy are velocities in the x and y 

direction respectively. To solve for the particle's 
motion we assume it is trapped by the wave. The cri- ' 
terion for the particle to be trapped can be obtained 
by examining the x component of the force on the par- 
ticle in the wave frame: 

Fx = q(Eo + yphVyB/c) 

where y 
0 

= (1 - Vph2/c2)-lt2, Vph = w/k. The first 

term of-the Lorentz force is the trapping term and the 
second is the gyratory or de-trapping term. Therefore, 
an initially trapped particle can never de-trap if 

For the zeroth order motion we assume that (4) is 
satisfied so that we may take Vx = V 

ph’ 
Integrating 

equation (2) and substituting from (1) gives 

v = 
-wcv pht 

Y yph (1 + wc2t2Vph2/c2)L'2 
(5) 

for the acceleration across the wavefront. Figures 2 
and 3 show the velocity space trajectories obtained 
numerically for negatively charged particles trapped 
in low and high phase velocity waves, respectively. 
In both cases, the particles' total velocity asymptotes 
to the speed of light circle as predicted by equation 
(5). 

Fig. 2 Velocity-space trajectory of a particle in a 
low phase velocity wave (V 

ph 
= .l c, 

Eo/B = 1.5, w/w c = 2). 
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For the parameters of Fig. 3(a) Vxl = -.08c in agree- 

ment with the figure. For particles which start out 
slightly slower than the wave the acceleration is more 
monotonic as shown by Fig. 3(b). 

The total energy gained by the particles as a 
function of distance traversed across the wave front 
can be found by integrating (5) and eliminating t in 
favor of y in the expression (3) for y. Thus, 
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Fig. 3 Velocity-space trajectories of particles in a 
high phase velocity wave (Vph = .9 C, 

Eo/B = 2.5, w/we = 9) for initial velocities 

(a) equal and (b) slightly below the phase 
velocity. 

The higher order motion observed in Figures 2 and 
3 can be represented by the first order expression for 
equation (1): 
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where x 1 = x - V 
ph 

t and w B = (eEok/m)1'2 is the non- 

relativistic bounce frequency. This driven oscillator 
equation describes the bounce motion of a particle in 
the potential trough of the wave and its shift out of 
the bottom of the potential well due to the relativis- 
tic mass increase and the Vy x B force. From the de- 
creasing bounce frequency and adiabatic invariance of 
the x motion we obtain the following expression for 
the bounce amplitude in velocity space: 

AV = AVo(l - Vy 
Yph2y," 
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where V. is the initial velocity bounce amplitude and 

(Y ph2VyB/cEo)2 c-c 1. This accurately describes the 

bounce amplitude observed in Fig. 2. In the high phase 
velocity examples of Fig. 3 the acceleration is so 
rapid that only after the particles have neared their 
asymptotic values does a slow bounce motion appear. 
However, an initial velocity shift is visible in 
Fig. 3(a) as the particle falls behind the wave due to 
its relativistic mass increase and can be shown from 
equation (6) to be roughly 
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Alternatively, in terms of distance in the direction of 
the wave 

Y(X) 
22 2112 

- yph(l + WC x ic 1 (7b) 

These are plotted in Fig. 4 along with the numerical 
results corresponding to the particle of Fig. 3(a). 
The total velocity asymptotes to c while the energy 
continues to Increase indefinitely. It is clear from 
equation (7) that a high phase velocity wave is advan- 
tageous for rapidly accelerating particles in addition 
to minimizing the damping of the trapping wave by the 
thermal plasma. 

Fig. 4 
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&J 
Total particle energy (ymcL) versus distance 
travelled (k) in the direction of the wave (x) 
or across the wave front (y). 

We now apply our acceleration results to the 
example of the fast electrostatic (upper hybrid) wave 

which may be created by the beat wave technique 2 or by 

forward Raman scattering of a single incident laser.5 
In this case, the phase velocity of the electrostatic 
wave is the group velocity of the incident wave; namely, 

V 
ph 

= c(l - w ;,'w~~)~'* = W&k ^L wP/k 

‘ph = we/w P (9) 

where o o is the angular frequency of the incident laser 

and wp is the plasma frequency (w 2 = 4nnoe2/me, e is 

the electronic charge, uUh2 = w 
2p 

P 
+ wce2, no is 
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the plasma density, and the subscript e denotes elec- 
tron quantities). Since V 

ph 
is nearly c, a trapped 

particle's velocity is primarily in the direction of 
the wave while its acceleration is primarily perpen- 
dicular to the wave. This has the advantage that the 

power radiated will be less by a factor of y2 than that 
of a linear device for the same acceleration. 

The trapping condition (4) can be written in the 
form 

WpJWce > Y Fh 

where we have taken E. to be the cold wavebreaking 

imit6 (4rreno/k) since Vph is much greater than the 

thermal velocity. Inequality (10) justifies approxi- 
mating the frequency of the upper hybrid wave as w in 

P 
equation (8). Substituting from (9) for y 

ph 
we may 

put the trapping condition in the form of a handy 
formula: 

BkG<l 
"16 A~ 

(11) 

where BkG is the magnetic field in units of kilogauss, 

n16 is plasma density in 10 l6 /cm 3 and X is the wave- 
iJ 

length of the incident laser in microns. Thus, the 
magnetic field must be fairly modest for typical lab- 
oratory parameters or the particles will not be 
trapped. 

Finally, substituting equations (8) and (9) in (7) 
yields for the change in y per unit distance 

L 0 w 
A.Ly 
AY 
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where the latter expression is valid for WCt >> 1. 

These provide the following handy formulae for the 
rate of energy gain of either electrons or protons: 

!i!? = 30GeV/cm 
AY 

( BKG 
---I+- 
"16 xl.l &I 

av = .lGeV/cm cBKC) /-- Ax "16 ?I "16 

Together equations (11) and (12) summarize the 
rate at which particles can gain energy. Equation 
(12a) suggests that a short wavelength laser is desir- 
able to minimize the width of the plane wave front 
needed, while equation (12b) shows that a high density 
plasma is desirable to minimize the overall length 
requirement of the device. 

The Surfatron accelerator appears to have great 
promise for parameters within the realm of current 
technology. For example, with a .3 micron laser, a 

plasma density of 10 19 /cm3 and 300 kG magnetic field, 
1 'IeV electrons or protons might be produced in a de- 
vice only 10 cm wide and 4 meters long. Theoretically, 

arbitrarily higher energies can be reached by merely 
extending the device. In contrast, the beat-wave 
accelerator without a magnetic field would require 100 
meters to reach 1 TeV energies with the .3 micron laser, 
and acceleration rates decrease when the total energy 
requirement is raised. 
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