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Summary 

A laser acceleration mechanism which 
utilizes a strong static, almost uniform, 
magnetic field together with an intense laser 
pulse is analyzed. The interaction and 
acceleration mechanism relies on a self 
resonance effect. Since the laser field is 
assumed to be diffraction limited, the magnetic 
field must be spatially varied to maintain 
resonance. .The effective accelerating gradient 
is shown to scale like l/a;, where Eb is the 

electron energy. For a numerical illustration 

we consider a 1 x 10f3 W/cm2, CO2 laser and show 
that electrons can be accelerated to more than 
500 MeV in'a distance of 15 m (approximately two 
Rayleigh lengths). 

Introduction 

At a recent laser accelerator workshop held 
at LANL a number of potential candidates for 
high-gradiant accelerators were discussed. 
Details of the various proposed schemes can be 
found in ref (1). Although the list of concepts 
considered at the workshop was extensive one 
mechanism which may have some interesting 
features was not discussed in detail. The 
purpose'of the present paper is to analyze and 
derive some of the scaling relations associated 
with this acceleration scheme, which we will 

~g~:,::~,~:'tn~sY ;;:";;::cf:s,::a;;:t;' . 
mechanism utilizes a resonance effect between a 
beam of gyrating electrons and a high power 
laser beam. The basic physical configuration 
for the CRL accelerator is similar to that o 4- 
the inverse free electron laser accelerator, f 

8) except that the wiggler field is replaced by 
a longitudinal magnetic field. The electrons 
gyrate about and stream along an external 
magnetic field, see Fig. 1, and are continually 
accelerated. Cyclotron resonance between the 
electrons and radiation field occurs 
when w = k vx + Go/y resulting in an 

exchange of energy. In an ideal si,tuation, 
i.e., no dispersion in the radiation 
field, w - ck, the resonance condition 

becomes ~(1 - B,) = no/u, where vr = cB, is the 

axial electron velocity and 

y = (1 - S 2 - Bx2)-1'2. It can be shown that 

the quantity y(1 - Es) is an exact constant of 

the motion, even in the presence of a large 
amplitude radiation field and uniform magnetic 
field. Hence, synchronism between the electrons 
and laser field can be continually maintained 
even as the electrons are accelerated. This 
maintenance of synchronism is called "self 
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resonance". In a more realistic environment the 
resonance condition can be violated by such non- 
ideal effects as dispersion, radiation 
depletion, etc. The following fully non-linear 
analysis will attempt to'include some of these 
non-ideal effects. 

Model and Analysis 

We will assume that the laser field is a 
circularly polarized Gaussian (lowest order) 
radiation beam and that the maximum radial 
extent of the electron beam'is small compared to 
the laser spot size. Therefore, only the 
representation of the radiation field on axis is 
needed and is given by the vector potential 

$z,t) = A(z)(sin $(s,t)ex + co8 $(e,t);y), (1) 

where A(z) o =A /Cl + (d,R)2)1'2 , 
$(z,t) = J" k(z')dz' - wt is the phase, 

0 

k(z) = o/c + x R-L(l + z~/z~~)-~ Is the 

wavenumber, zR = 7 r. 2/x is the Rayleigh 
length, x * 2v C/O, r Is the minimum spot size 
and w is the laser frgquency. The radiation 
field in Eq. (1) is not self-consistently 
evaluated, in the sense that depletion and phase 
shift effects due to the presence of the 
electron beam are neglected. 

Because the axial phase velocity of the 
laser field in Eq. (1) is not equal to c, but in 
fact varies with x, it is anticipated that to 
provide for a means of maintaining resonance 
between the particles and laser field it will be 
necessary to vary slightly the applied magnetic 
field. If the applied magnetic field varies 
gradually we may represent it by 

B_o(x,Y,z) = - (W)(aBo(z)/az)(x ix+ y !Y) 

+ Bo(zkZ, (2) 

where x B -1 
compared 

aB /az and y Bo-laBo/ax are small 
go uni?y. 

The electron trajectories in the presense 
of Eqs. (1) and (2) may be written as the sum of 
a slowly varying guiding center contribution and 
a rapidly varying cyclotron contribution. The 
electron's transverse momentum and position are 
represented as 

(P,, Py) = (Pgx, Pgy) + Pl(cos 8, sin 0), (38) 

(X,Y) = (x,. y,) + r (sin 9, - cos B), (3b) 

where (P gx, Pgy> and (x g, y,) denote the 

transverse components of the electron's guiding 
center momenta and coordinates, PI is the 
magnitude of the gyrating part of the momentum, 
r is the Larmor radius and B is the electron's 
phase angle. We now assume that xg, yg, Pgx, 
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pgY’ 
r, PI and 8 + + are slowly vary 

functions of z, i.e., change slightly during a 
cyclotron period. With these assumptions 
together with Lorentz force equation , the 
following set of fully relativistic non-linear 
orbit eauations are obtained 

Y *-am (1 (ha) 

% --anw (4b) 

(1 . 
pi - no/y - ~(1 - wZ)+ a w 

- wZ) 
u *in +, (4c) 

I 

. “1 
y*-ao- 

Y 
co* $. (f+d> 

where a = le/A(z)/moc2, Ul= Pl/moc , 

uz- PZlmoc, 5,’ UJY, Y = (1 + u, * y 
l/2 

, 

n = 1 + (1 + z2/zR2)-1(czR/m)-1 is the effective 

index of refraction of the medium, 
qJ - 0 ++, no - ielBo(z>/moc is the non- 

relativistic cyclotron frequency and 

?z - ano/az- These non-linear orbit equations 

in normalized form become 

au 
-I* - 
at 

a(J?L+cosl+~ 9 (5a) 

jt$-v [b/U z -9 
7 u, 

U2 

$1 
z 

(5b) 

+ a (1 - nL+ nh) A cos $ 

uz2 
(5c) 

*-au ( zz+) 
1 Y- 

COB J, (5d) 

where 5 - ZW/C is the normalized axial distance, 

b = ao(z>/w, Uz= (Y - b)/(* - A), A - ho/w and 

Aw = (no/Y - w(l - n8a))/8, is the frequency 

mismatch. For a constant magnetic field, 
refractive index and laser amplitude, Eqs. (5) 
have constants of the motion Cl and C2 which are 
given by 

f(y) +.a Ul sin JI = Cl (6a) 

r(n - 8,) = 5 

where f(y) - y(Uoz A0 - (1 + n2)(r/2 - Y,)), 

the subscript zero denotes the quanititek 
initial value and B,, n and a are constapt. It 

can be showo that as the particles are 
accelerated they are also bunched around the 
resonance phase $JR = TI. To obtain the scaling 

of the effective accelerating'gradient we 
consider the case where the initial transverse 

momentum is zero, i..e.,Uol= 0 and 

Y,(l73,) - 112 Y,. The spatial rate of change 

of y is therefore 

g*!z ; (u/u,- 1) l/2 
Y 

where n = 1 and a is the constant. Integrating 
(7) and assuming that the final gamma, yf,l IS 
much greater than yo, g Ives 

Y*lY,’ Y, 
-4/3(3 m a ti?~)~'~' 

where L is the interaction length and x Is the 
laser wavelength. From (7) and (8) we conclude ' 
that the accelerating gradient is proportional 

to Eb-li2 where Eb is the electron energy and 
that the electron energy is proportional to 

L2'3. If n and a are not uniform the magnetic 
field must be contoured to maintain cyclotron 
resonance. Tbe optimum variation of the , 
magnetic field is found by setting 
aA/ag = h = 0 and solving for b in (5~). 

As a numerical illustration we will 
consider a CO2 laser with an energy flux of 1 x 

1013 W/cm2 and a spot size of r. = 0.5 cm. The 
Rayleigh length is 7.8 m and the peak laser 

electric field is EL= 60 MeV/cm. For this 

example a = 0.02. Taking the external magnetic 
field to be initially 100 kG reguires an injected 
electron beam of 25 MeV. Figure 2 shows the 
electron energy as a function of interaction 
distance with a uniform magnetic field and an 
optimally contoured magnetic field. The 
electron energy reaches - 500 MeV in a distance 
of 22, q 15.5 m, for a contoured magnetic 

field. The contoured magnetic field was 
increased approximately by 15%. The phase of 
the electrons is shown in Fig. 3 during the 
initial stage of the acceleration. The initial 
uniform distribution,'from 0 to 2 n, of electron 
phases rapidly bunch around the stationary 
phase IJJ~ - r. 
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Fig. 1. Illustration of the CRL acceleration process 
in which electrons are continually energized 
via a self-resonance effect. 
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Fig. 3. The phases of the electrons during the initial 
stage of the acceleration. 

Fig. 2. Electron energy as a function of the inter- 
action distance. 


