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A CLASSICAL ELECTRON-CYCLOTRON MASER WITH AXIAL ELECTRON BEAM INJECTION 

J. L. Vomvoridis 
Western Research Corporation 

1901 N. Ft. Myer Drive 
Arlington, VA 22209 

It is shown that the Electron-Cyclotron Maser 
interaction can be made compatible with exclusively 
axial injection of the electron beam, by introducing 
an appropriate slow-wave structure. With an appro- 
priate choice for the relevant parameters, the result- 
ing interaction is found to be extremely efficient, 
with efficiencies aooroachinq 100 oercent. and to 
possess a moderate frequency-upshift from-the non- 
relativistic gyrofrequency. The nonlinear theory of 
the interaction is outlined and preliminary designs 
are presented. 

Introduction 

In the Electron-Cyclotron Maser (ECM) inter- 

action,lm3 an electron beam propagates along a 
magnetostatic field and interacts with an electro- 
magnetic wave with transverse electric field polar- 
ization. For this interaction, the frequency is 
approximately equal to the relativistic electron 
gyrofrequency in the magnetostatic field. The prin- 
cipal experimental realization of the ECM is the 

gyrotron, 
4-6 in which the electromagnetic wave 

propagates essentially at a right angle to the 
magnetostatic field. The gyrotron has a prevalent 
position among microwave generators for its distinct 
features of hish efficiency (%40 Percent) and short 
wavelength operation, below 1 cm.' In the gyrotron 
the electron beam energy available to the interaction 
is that associated with the gyrating motion of the 
electrons, while the axial electron velocity remains 
largely unaffected by the interaction. However, large 
values of the pitch angle must be avoided, since they 
introduce a large thermal spread in the axial velocity 
and destroy the resonance. 

It is therefore very important to identify an 
interaction which combines attractive features of the 
gyrotron (high efficiency and frequency) with exclu- 
sively axial injection of the beam. The purpose of 
this letter is to show that such an interaction not 
only exists but also is extremely efficient and 
operates at a frequency substantially above the non- 
relativistic gyrofrequency. Only the main features of 
the analysis will be outlined here; the details are 
currently under study and will be reported soon in a 
comprehensive publication. 

Physical Basis 

Generally, in the ECM the motion of the beam 

electrons is controlled by a simple invariant, 7-a 

P = u(n - B,,) , (1) 

where ymc* is the total particle energy, B,,c is 
the axial velocity and n = kc/o is the refractive 
index for a wave with transverse field polarization, 
frequency w and wavenumber k . The invariance of 
p is easily seen by comparing dy/dt a vI * ,El and 

d(%$,)/dt a @,, - (v ,.I, x Bl) ' where the wave fields are 

interrelated by BI = n &,, x El . For p to be 

invariant it is required only that n be constant, 
that the magnetostatic field B. = Bee,, be uniform, 

and that no axial electric field be present 
@,I .E=O. 

nates. 
Eq. (1) describes trajectories in (y,B,,) coordi- 

These trajectories are given by the hyperbolas 
Y = p/(n - B,,) with pole at B,, = n 1 Which segment ' 
of these hyperbolas is an actupl trajectory depends on 
the full set of equations of motion and depends on the 
field amplitudes. It is clear however that y is res- 

tricted to values at least equal to (1 - 8*,,)-* the , 
value of Y that corresonds to vanishing transvetse 
velocity, 8, = 0. It can be seen in Fig. la that if 

a fast-wave (n < 1) is employed, then only one point 
with B1 = 0 is present on each hyperbola 

Y q P/(n - 8 ,, 1 , 

minimum energy. 
and this point corresponds to the 

Thus, a fast-wave ECM device, such as 
the gyrotron, requires a beam with transverse energy, 
which would be converted to radiation energy. On the 
other hand, in the slow-wave case (n > 1) of Fig. lb 
each hyperbola y = p/(n 

Y = (1 - B,, I-* 

- B,, ) intersect,s the curve 

p* >n* - 1 . 

at two points, provided that 

imum energy. 
One of these points corresponds to max- 

Thus, it is seen that it is in principle 
possible to extract energy from the beam, if the beam 
is injected exclusively axially, with an initial energy 

given by the largest root of p/(n - B,, ) = (1 - B2,,)* 
Such injection parameters are 

Y, = 
h + np 

n*-1 ' 
(2) 

8 
P 

,,. = n - 7 , $10 =o, 
0 

where h q (p* t 1 - n*)* . 

2- 
(a) N < 1' I 

I 

0 
4, 

1 

* (b) N > 1 
I 
I 

Figure 1. Electron trajectories with p invariant in 
coordinates (y,B,,), (a) for n < 1 , and 
(b) for n > 1 The in ersection with the 
dashed curve y'= (1 - B,,)-4 gives the J 
points with B, = 0 . 

At first look it might seem paradoxical that a 
wave with transverse electric field polarization could 
possibly extract energy from a beam with exclusively 
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axial velocity. However, it should be remembered that 
6I = 0 applies only initially. After a short time 

interval, At , some transverse momentum 

A(y8,) = - (e/IW2)(c~l + ,v,, x Bl)At = (e/me) x 

(nB,, - l)_EIAt is developed. The injection values of 

Eqs. (2) give nB,, - 1 > 0 , hence the generated trans- 
verse velocity is coparallel with and does work on the 
wave electric field. How much energy is subsequently 
converted and how high a conversion efficiency should 
be expected are questions to be answered from a 
consideration of the complete set of equations of 
motion. These questions are addressed and answered 
in the remainder of this letter. 

To study the motion of the electrons, with or 
without axial injection, a simple model is adopted, 
in which the wave fields have constant amplitude and 
circular polarization and are expressed by the vector 
potential 

cos@ + ey sin@ 
1 

, (3) 

with constant amplitude A and phase I$ = kz - wt . 
The magnetostatic field is uniform, B. = B,@, , while 

transverse electron velocity is expressed as 

11 = BLC[eX cos(@ + x) + ey sin(@ + X)], (4) 

where x is the azimuthal phase in excess of 9 . 
Given the invariance of p , it suffices to consider 
the evolution of x and any function of y . As 
such function the quantity $ is chosen, where 

sin$Z ( n* - 1)y - np 
h 

The values $ = VT/~ correspond to the largest and 
smallest values of y , those with 6, = 0 . From the 

equation of motion, the equations of x and J, are 
obtained. These equations possess an additional inte- 
gral of the motion, given by 

K = sin*@ - CB sin@ + CA cos$ cosx . (6) 

I 
where CA = 2(eA/cm*) h-' dn* - 1 , CB = (n/w)h-' , 

and R = eBo/mc . This constant can be used to reduce 

the problem to a quadrature and to describe the motion 
of each individual electron in terms of elliptic func- 
tions. The procedure is beyond the point at present. 
The most important use of K is that K($,x) = const 
describes the actual trajectories in phase space 
(uJ,x). 

Of particular interest is the curve K($,x) = 
K. = 1 - CB , which passes through the point $ = a/2 , 

i.e., the point with maximum energy and BL = 0 . 

Phase space trajectories with K. = 1 - CB are given 

in Fig. 2 for CB = 1 and various values of CA . In 

this figure the horizontal axis is limited to the 
interval 0 < x < TI , in which the electron transverse 
velocity is at an acute angle relative to El and the 

electrons lose energy (di/dz < 0) . For small values 
of CA , both x and I$ decrease, until a minimum 

value Qmin is reached x = 0 . Subsequently, Q 

again increases with x < 0 . This segment of the 
trajectory is symmetric about )( = 0 to the segment 
shown. Given the linear relationship between y and 
sin+ in Eq. (5), the maximum energy Oy lost by the 

electron is proportional to 1 - sin$min . It can be 
seen that Ay increases with CA but generally 

remains small, until CA reaches a critical value 

(just in excess of 0.3 in this case). For values of ' 
CA exceeding this critical value, it is X that first 

reaches a minimum value xmin , beyond which it starts 

increasing, while $ continuously decreases, up to 
J, min atx=n. The continuation of this curve is 

symmetric about x = 71 , with $ increasing. For 
these larger values of CA the energy lost by the 

electrons is substantially higher than before, due to, 
the discontinuity at the critical value CAcrit . 

0 T/2 
Relative Phase Angle X 

n 

Figure 2. Electron trajectories in phase space ($,x) 
for electrons starting with BLo = 0 , 

YO = ymax ' 
for CR = 1 and CA = as shown . 

The dashed curve corresponds to the values 
of CA at transition from low to high 

efficiency. 

Efficiency 

The foregoing discussion bears direct relevance 
to the efficiency of the interaction. The efficiencr 
is equal to the Traction of initial beam power con- - 
verted to electromagnetic power. With consideration 
for the conservation of particle flux in steady state, 
the efficiency is given by n = <y. - yf)/<yo - l), 

where yf is the final value of y and the angular 

brackets represent an ensemble average over all beam 
electrons. In general, the efficiency can be written 
as the product n = n1n2 , where n, is the fraction 

of the available to the interaction and n2 is the 

fraction of the available energy that is actually lost 
by the beam. In the present configuration of an 
axially injected monoenergetic beam, the efficiency 

n1 
= 2h/(l + h + np - n2) can be maximized to n, = 1 

by requiring that h = 1 (i.e., p = n). On the other 
hand, the efficiency n2 is 

1 - sinaf 

n2= 2 (7) 



3126 

No ensemble averaging is involved, since the electrons 
are not distinquished in their initial phase anqle 

x0 * The interaction length can be optimized, ;o that 

$f = $min ' The resulting optimized efficiency is a 

function of CA and CB and is presented in Fig. 3. 

In this figure the regions of high and low efficiency 
are distinguished. As has already been discussed, the 
high efficiency region occurs for sufficiently large 
CA and CB and is the result of the occurence of 

Q mjnat X=T, while the opposite holds for the low 

efficiency region. The boundary of these two regions 
is given by the dashed curve in Fig. 3. 

1 

0 
0 1 2 

Magnetostatic Field Constant CB 

Figure 3. Efficiency n2 as function of CA and 
CB. for optimized interaction length and 
axial beam injection. The dashed curve 
separates the low and high efficiency 
regions. 

As can be seen in Fig. 3, the efficiency n2 

approaches the value n2 = 100 percent for CB + 0 

and CA -+ 1 . In practice, such an operation is not 

expected to be feasible, primarily because it requires 
B. = 0 , while a finite value of B. is necessary to 

confine the nonneutralized electron beam. In addition, 
CA = 1 corresponds to relatively high values of the 

radiation fields. It appears to be more convenient 
to design this maser to operate with CB Q 1 . In 

this domain, relatively moderate values CA 1, 0.5 give 

enormous efficiencies 
n2 ' well in excess of 50 per- 

cent. In choosing the design value of CA , care must 

be taken to take it somewhat larger than the critical 
value, to avoid potential difficulties when the elec- 
trons pass in the vicinity of the saddle point. 

Examples 

To demonstrate the potential of this interaction, 
several conceptual designs are presented in Table 1. 
For these designs the values CA = 0.41 and CB = 1 

have been chosen, giving an efficiency n2 = 0.65 for 

optimized interaction length. As an additional con- 
straint, the radiation electric field has been taken to 
satisfy EIXfs = 100 kV , where Xfs = 2rc/w is the 

free space wavelength of the radiation. This leaves 
one free parameter. As such is chosen the square of 
the refractive index, which is equal to the effective 
dielectric constant of the propagation'structure. It 
is seen in the examples of Table 1 that this maser can 
operate with both relativistic and mildly relativistic 
electron beams, with a high efficiency, approximately ' 
50 percent higher than the gyrotron. (For a fair com- 
parison, it is necessary to consider the gyrotron with- 
out optimization of the axial distribution of the 
radiation and magnetostatic fields.) An additional 
attractive feature of this interaction is the low 
magnetostatic field it needs. In the examples of 
Table 1 the magnetostatic field is 2.5 to 36 times 
weaker than what is required for the gyrotron, for 
which s2 =yow . 

Table 1. Design examples for CA = 0.41, CB = 1 and 

E hfs = 100 kV 

Refractive Initial 
Index Squared 

Normalized 

n2C-1 
Beam Energy Gyrofrequency Efficiency 

Eb[keVl WwC%l n&l 
1.5 494 
2.0 298 :-; 

29.0 

4.0 13:2 
34.0 

131 
8.0 

44.7 
71 20.2 

15.0 
53.9 

30.0 z; 
28.5 60.2 
41.0 ' 64.4 

Due to its preliminary nature, this letter has not 
addressed issues like the calculation of the optimized 
interaction length, the effects of thermal spreads, 
the small-signal evolution, the competition of this 
Interaction with the conventional Cherenkov interaction, 
etc. These issues will be addressed in the comprehen- 
sive manuscript currently in preparation. 
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