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The bandwidth and frequency enhancement of the 
free electron laser instability in a mildly relativis- 
tic (y< 1.15) electron beam propagating through a di- 
electryc loaded waveguide is presented. For an appro- 
priate choice of the dielectric constant i and the 
thickness of the dielectric material, it is shown that 
the instability bandwidth and frequency can be greatly 
enhanced for specified values of the beam energy and 
the wiggler wavelength. 

One of the most basic instabilities that charac- 
terize a relativistic electron beam propagating through 
a helical (or undulator) wiggler magnetic field is the 
free electron laser instability.lm7 In recent years, 
the free electron laser instability has been exten- 
sively investigated with particular emphasis on appli- 
cations to high power microwave generation. In the 
previous theoretical studies of this instability, it 
;;;z,“;s that as a result of the relativistic Doppler 

from tie 
the frequency w of the microwave radiation 

electron beam passing through a wiggler field 
with the axial wavelength ~0 = 2n/kD is given by 
w = (k + kO)Bc = ~~(1 + B)Bkoc. Here k is the axial 
wavenumber of the radiation, y = (1 - B2)-1/2 is the 
relativistic factor of the beam electrons, and c is 
the speed of light in vacua. In this regard, in order 
to generate high frequency microwave radiation, high 
energy beans (y >> 1) are required. However, it is 
very undesirable to have a high y value in a practical, 
compact microwave tube. I, therefore, develop a new 
idea to enhance the frequency upshift without making 
use of a high y value. Moreover, I also present a new 
promising scheme for a broad bandwidth microwave 
amplifier. 

The previous analysis 6, 7 by the author for an 
electron beam in a perfectly conducting waveguide shows 
that the free electron laser instability is essentially 
a mode coupling between the electromagnetic and elec- 
trostatic modes, whose dispersion relations are 
expressed as 

TE mode, 

TM mode, 

and 

o = (k + ko) Bc, (2) 

respectively, for a tenuous beam. Note that for a 
tenuous beam, the electrostatic mode can be approx- 
imated by the free streaming mode in Eq. (2). In 
Eq. (11, B,p,, and afn are the nth roots of the Bessel 
function J 

f 
(@&en) = 0 and its derivative Jj(cl&) = 0, 

respective y, of order L. Rc is the radius of a 
grounded conducting wall, and TE and TM represent the 
transverse electric and transverse magnetic modes, 
respectively. However, for present purposes, I assume 
a tenuous electron beam propagating through a 
cylindrical waveguide loaded with a dielectric material 
in the range R, < r < R,. Therefore, the radial Pro- 
file of the dielectric constant is given by E(r) = 1, 
for 0 < r < R,, and E(r) = ; for Rw < r < R,. The 
permeability u of the dielectric material differs from 
unity by only a few parts in 105, thereby approxi- 
mating p = 1 in the subsequent analysis. Cylindrical 

polar coordinates (r,e,.z) are introduckd. In the 
remainder of this article, properties of the mode 
coupling of the free electron laser in,a dielectric 
loaded waveguide are investigated, in connection with 
enhancement of the frequency and bandwidth of the 
microwave radiation from a mildly relativistic electron 
beam. 

It is, therefore, required to derive the 
dispersion relation of the transverse electromagnetic 
mode in a dielectric loaded waveguide. In the analysis, 
a normal-mode approach is adopted in which all com- 
ponents of the electromagnetic field are assumed to 
vary according to 6$(+t) = $(r)exp{i(ee + kz - wt)}, 
where & is the azimuthal harmonic number. The Maxwell 
equations for the electromagnetic field amplitudes can 
be expressed as 

x x $(x,1 = i(w/c)((x,l , x x CCx,) = -i(o/clc(r)~(Q), (3) 

without inclyding the-influence of the beam presence. 
In Eq. (3), E(g) and 
fields. Maklng use o ! 

(x) are the electric and magnetic 
zq. (3), it is straightforward 

to show that 

Be(r) = iOE(r) a n 

cP2 
sEz(r) -+iZ(rl , (4) 

,p r 

SO(r) = -i -%j- & iz(r) - +- i,(r) , (5) 
cP pr 

and 

jla a .t2 21 I I 
fiz (r) 

\iar %-7+P I = 0, (6) 

where p2 = w2c(r)/c2 - k2, i (r) and ez(r) are the 
azimuthal and pial compone ts Pi of the electric field 
and BO(r) and BZ(r) are the azimuthal and axial com- 
ponents of the magnetic field. 

The appropriate boundary conditions oi! iz(r) and 
i,(r) at r = R, are give? by EZ(Rc) = 0. Moreover, the 
fields R(r), &e(r), and EZ(r) are continuous across the 
boundar? (r = R,) of the dielectric material. Evident- 
ly, the solutions to Eq. (6) are given by a linear com- 
bination of the Bessel functions of the first kind 
J&(pr) and the second kind Nt(pr) of order L. After a 
tedious but straightforward algebra, it can be shown 
that the dispersion relation of the electromagnetic 
mode in a dielectric loaded waveguide is expressed as 

2 2 
D;(w,k)D;(o,k) = ’ (’ - c2Hn2 - 5% 

n4c4 
(7) 

where the TE and TM dielectric functions are definedby 

E 1 J;(n)N;(r) - J;(r;)Nk(rl) 1 J;(S) 

DT = ; J&n)N;(c) - J;($N&$ 
- --’ (8) 

6 J&s) 
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. J;h)N&d - J&dN~h) 
Di = i J&dN&cl - J&)NQ(n) 

1 J;(S) 
YJ,ts)’ 

(9) 

respectively, and the parameters 5, S, and n are de- 
fined by 

2 2 
w /c - k2 = t2/~; , w2e/c2 - k2 = c2/R; , (10) 

and il = @JR,, and the prime denotes J;(x) = dJ,/dx 
and N:(x) = dNk/dx. Several points are noteworthy from 
Eqs. t7) - (10). First, the dispersion relations of 
the TE and TM modes are decoupled for k = 0. Second, 
in the limit of d + 1 or Rw/Rc + 1, the dispersion 
relation in Eq. (7) can be simplified as Eq. (10) with 
E/R, = ain/Rc for the TE mode and with c/R, = B&R, 
for the TM mode. Third, for a completely filled 
dielectric waveguide (Rw + 0), Eqs. (7) - (9) can be 
also reduced to Eq. (10) with 5 = CL~ for the TE mode 
and with 5 = B* for the TM mode. 

For given values of the dielectric constant e , 5 
is determined from Eqs. (7) - (9) in terms of .c. The 
oscillation frequency w and axial wavenumber k in a 
dielectric loaded waveguide are obtained from the 
simultaneous solution of Eq. (10) for specified 5 and 
5. Figure 1 is a plot of the dielectric dispersion 
relation in the parameter space (w,k) for 2 = 1, 
Rw/k = 0.8 and several values of the dielectric con- 
stant b. The straight lines in Fig. 1 represent the 
free streaming mode in Eq. (2) for y = 1.107 and 
several values of the normalized wiggler wavenumber 
kok . The dispersion curves in Fig. 1 correspond to 
the lowest radial mode number. In a range of physical 
parameters, the free streaming mode w = (k + kg)f3c 
intersects the dielectric dispersion curve of the 
electromagnetic mode, thereby indicating the free 
electron laser instability. The mode coupling occurs 
at k = kp, distinguishing two cases; (a) the short 
helical wavelength (SHW) mode corresponding to the 
normalized mode coupling wavenumber kpRc = 9.3 for 
e = 2 and k \ = 9 in Fig. 1 and (b) the long helical 
wavelength 8 LHW) mode corresponding to kpRc = 12.3 
for e = 6 and kDR, = 1.5 in Fig. 1. 

R\N/Rc = 0.8 

10- Y=l.107 
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FIGURE 1 PLOT OF THE OIELECTRtC OlSPERSlON RELATlON IN THE PARmiETER SPKE 

L.k) FOR1 -1. &JR, -aa AND SEVERAL "*uJES OF THE DlELECTRlC 

CONSTNUT L FOR 1 -,.,D, AND SE"ER/\L "AWES OF k&. THE STRAIGHT 

LtNES REPRESENTv -(k+*ol‘k 

SHORT HELICAL WAVELENGTH MDDE 

The SHW mode is the high frequency operation of 
the free electron laser instability. The normalized 
radiation frequency w/kDBc = (k + kg)/ko versus the 
dielectric constant E is plotte i!i* in Fig,. 2(a) for the 
SHW mode, y = 1.1, several values of kOR and para- 
meters otherwise identical to Fig. 1. Tfii electro- 
magnetic dispersion relation of a short. axial wavd- 

length mode satisfying kR, >> 1 can be approximated by 
o = kc/@12, thereby giving the normalized radiation 
frequency 

w/koBc = (1 - Be 
1/2)-l 

. 

Shown also in Fig. 2(a) is plot of w/kOBc in Eq. (11). 
Obviously from Eq. (11) and Fig. 2(a), the normalized 
radiation frequency w/kOBc increases rapidly as the 
dielectric constant E increases from unity to e = 1/02. 
In this regard, it is important to emphasize that the 
submillimeter microwave radiation can be easily pro- 
duced by this scheme even for a moderate electron 
energy (y < 1.15). The limitation of the radiation 
frequency ?s the availability of the proper dielectric 
material in the present time. 

LONG HELICAL WAVELENGTH MODE 

After a careful examination of Fig. 1, it is 
noted that the LHW mode coupling can occur only for 
the dielectric loaded waveguide. Figure 2(b) is plots 
of the normalized radiation frequency w/koEc = kp + kg)/ 
k0 versus e for the LHW mode, y = 1.15, several values 
of kORc, and parameters otherwise identical to Fig. 1. 
Note that the normalized wiggler wavenwnber kgR, for 
the LHW mode is much smaller than that for the SHW 
mode. However, by an appropriate choice of the dielec- 
tric material, the radiation frequency w for the LHW 
mode can be many times of the wiggler frequency kOBc. 

WIDE BANDWIDTH AMPLIFIER 

An outstanding microwave amplification requires 
a broad instability bandwidth. As shown in Fig. 1, the 
dispersion curves of the free streaming and dielectric 
waveguide modes for koRc = 4.43 and e = 4 coincide 
practically in the range 4.5 < kRc c -, thereby indi- 
cating possibilities ofwide bandwidth amplifier. In 
general, for a specified beam energy y, proper choice 
of the dielectric constant E and the wiggler’wavenum- 
ber k9 gives a wide band free electron laser amplifier. 
The instability bandwidth can be easily more than fifty 
percent. 

2 E^ 
Fig. 2 Plot of normalized radiation frequency o/kOBc 

vs. t for (a) the SHW mode, y= 1.1, (b) the LHW 
mode, Y = 1.15, several values of kgR,, and 
parameters otherwise identical to Fig. 1. 
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Finally, I conclude this article by pointing 
out that the instability growth rate for large wave- 
number perturbations (kQ >> 1) is substantially re- 
duced by the axial momentum spread of the beam 
electrons,‘js’ limiting the enhancement of the band- 
width and radiation frequency. However, the axial 
momentum spread of an electron beam for the free 
electron laser instability can be much less than 
that for other microwave tubes such as the gyrotron. 
The growth rate and bandwidth of the free electron 
laser instability are currently under investigation 
by the author for a broad range of physical para- 
meters, including the influence of the axial momentum 
spread on stability behavior. 
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