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Subharmonic Beam-loading in Electron Linear Accelerators 

W. J. Gallagher 
Boeing Aerospace Co., Seattle, Wash. 98124 

The intention of operating an electron linear accelera- 
tor subharmonically beam loaded for free electron laser (FEL) 
application requires justification of the beam-loaded energy 
gain equation. The mode of operation typically planned is 5- 
10 nanocoulombs single RF cycle pulses at 25-50 nanosecond 
intervals. This inquiry investigates details of that sort of 
beam loading and the performance achievable. 

Pulse train beam loading is necessarily of course sub 
harmonic, but two distinguishable cases arise, depending on 
whether there is one or more beam pulses transiting the 
waveguide at the same time. The energy gain of single short 
pulses, less than the fill time of the waveguide, where the 
pulse transit time through the accelerator waveguide is short 
compared to the pulse length and where pulse spacing is 
greater than one RF fill time has been treated in a previous 
paper (Ref. I). 

For constant gradient waveguide, 

V=Vo-irIoLvgot; Vo=&L 

where V, is the n&load energy gain, i the pulse current, r 
the shunt impedance per unit length, I, the initial attenuation 
coefficient, L the waveguide length, vgo the initial group 
velocity and r the interval of pulse duration. It was also 
shown in Ref. (1) that the above expression is equivalent to 

V(t) = v, - ye q(t) 
where q is the charge in the pulse. 

Several other investigations of single bunch beam load- 
ing have been undertaken, notably at SLAC, where it has 
been found experimentally that the beam-loading varies 
directly as the bunch charge and independently of its energy; 
that investigation also included radiation effects of the 

losses owing to parasitic effects of higher 

:%a z:z 3) and NBS (Calthersburg). 
Iwake’ fie’dtfiy Similar investigationt4)have been made at 

In the case of beam loading where there are multiple 
pulses transiting at the same time, spaced far enough apart 
that significant RF power is introduced between pulses, the 
energy gain may be calculated by dividing the waveguide into 
a number of segments, each equal in length to the integral of 
the interpulse time (T) and the local group velocity fv (2)). 

For constant gradient waveguide, where ? is !he fill- 
time, 

Z n+l 
T= nf l-210Z) 1 zn 

or 
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e-r-d/Q(e~T/Qel) 
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The net energy gain in the steady state is then the sum of the 
energy gains in all the segments. The energy gain of each 
segment, from Eq. (I), is 

V,, = (E. n - $6 q) Zn 
I 

where Eo,n is the initial field intensity in 
(gotten from the energy gain equation itself) 

E :E 
o,n o,n-I 

-$&q:Eo- (n-1) $6 q 

By induction it can be seen that 

Vn = (E. - (n-i) y & q) Zn - 7 & q Zn 

and 

” = Cvn = CR, - n ;&q) Zn 

= EoL -y&q * CnZn 
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(3) 

each segment 

(5) 

(6) 

The number of segments is evidently t IT. 
As an example, at 2856 mcs. a 2.7m disk-loaded, 

constant gradient waveguide having the following properties; 

Loss factor, Q = 13,200 
Shunt impedance r = 53 megohms/m 
Initial attenuation coeff. I = 0.114 nep/m 
Initial group velocity, vg$C = O-019 
Fill-time, t = 0.712 lo s 

will with interpulse times (T) of 100 nsec have a “beam 
loading factor” c nZ, = 9.327m. calculated by observmg 
T/T = 7 and from Eq. (2) that: 

ZI = 0.55Sm 
22 = 0.487 1 Z, = 2.693m 
Z3 = 0.425 
z4 = 0.371 CnZ, = 9.327m 
Z5 : 0.324 
Z6 - 0.283 
Z7 : 0.247 

It may be supposed on energetic arguments that the 
energy gain in the subharmonic case may be calculated on the 
basis of the equivalent beam current, i =wq/Zn, using the 

I beam loaded, steady state energy gain 

V = EoL - &o 
C 

210L + (I-210L) f.n(l-210L) 
3 

This is, of course, shown to be justified quite closely. 
.Uoreover, in the limiting case we may calculate the energy 
gain in the steady state using Eq. (7) and a specified beam 
current or by Eq. (6), using the corresponding charge per 
cycle. For the example given earlier and 100 ma beam 
(corresponding to 0.035 nC/cycle) by Eq. (7) the energy gain 
is 26.80 MeV; for the 2034 terms arisin f6jn Eq. (6), C n Zn = 
2329m and the energy gain is 26.74 MeV. 

It will not, presumably, surprise the reader that Eq. (6) 
does not devolve into Eq. (7) for the fundamental case, but 
approximations in the derivation, while tantamount to a very 
close analysis of the model is, nevertheless, not exact. 
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In the case of transient operatton of a linear 
accelerator, such that there is only one bunch in the wave- 
guide during bunch transit and where there is no signifJcant 
irput RF power during the pulse length of the packet, the 
energy gain of the first and last particle of the bunch is 
kdeaendent of the bunch shape and depends only on the 
stored energy in the waveguide and the total charge transit- 
~ng the structure.(l) 

(>I2 : I + > 
f S 

(8) 

ivhere Vi is the energy gain of the initial particle and Vf that 
of the fmal particle; WB is the energy in the beam pulse, 

WB = J iV dt 

and W, ts the energy stored in the waveguide at the end of 
the p&e. By assumption, the stored energy at the beginning 
of the pulse (W,), 

%o-ws+wB (10) 

which can be calculated from the power input and a descrip- 
tion of the waveguide. 

Derrvatron of Eq. (8) is lengthy, but a transcending one 
E provided by the observation that the energy gain of a 
particle is proportional to the electric field in the waveguide 
and that the stored energy is proportional to the square of 
the field intensity in the structure, 

w 
(& = 4 

f S 

from which, notmg Eq. (IO), Eq. (8) follows. 
For example, if 10 MW is to accelerate 5 nC to 30 MeV 

with 0.01 energy spread, from Eq. (9) the beam energy WB = 
0.15 joules; from Eq. (8) the finai stored energy must be Ws = 
7.39 ;oules, so that the initial stored energy must be W, = 
7.54 joules, by which a partial description of the requisite 
\tiaveguide is derived. The above considerations do not 
address the question of achieving the intended energy gain 
whrsh involves an extended discussion, omitted for sake of 
Srevlty. 

In the case of subharmonic loading, where there are 
several pulses transiting the waveguide at the same time, the 
energy spread in a single bunch may be calculated as the 
difference of energy gain of the first and last particle of the 
same bunch. Using the segment model above and the “fat 
electron” approach 

1’ n,= 0 (E -p y$ q,z, 

V 
“f 

= CEO -n$+)Zn -76 q Zn 

Hence, 
Vi 2: c Vn; = EoL -r&q Cni!n (12) 

Vf = 1 Vnf = EoL - 2 6 4 C (n+l)Zn 

and the fractional energy spread is therefore 

V -z 1 ;z qL 
V 

v. - t ; q c (n+2)Zn 
(13) 

This calculation is ideal; it assumes an infmitesrma:ly small 
bunch (vanishingly small phase extent, although that is some- 
what inconsistent), ignores space charge forces and injection 
phase and is, therefore, a limiting case; the spectrum width 
cannot be better than that indicated (without programming 
injection phase). 

In general, the energy gain of a particle in a short pulse 
is t 

v(t) =EoL cos$(t) -?&L 
s 

q(t) dt 

0 

Hence to produce a constant energy gain (V) the injection 
phase as a function of charge injected is, of course 

t 

J- q(t) dt 

0 

(li) 

If the last particle in the pulse transits on the wave crest 
(4 =O) for economical reasons, then noting that the stored 
energy per unit length in constant gradient wavegLide is 
everywhere the same, Eq. (14) may be written 

v = u+ (F - vq. ) - T 6 Lq, 

80 

where q, is the total charge in the pulse, which solving for 
the dimensionless ratio 

w rL 90 --= 
2Q V 

(1-i) 

from which it is evident that such a phase programming 
scheme will require an extravagant amount of stored energy 
!n the waveguide. 

Obviously, all the above arguments may be derived for 
constant impedance accelerator waveguide but are omitted 
for want of space. 
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