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Summary 

The response of air-core magnets to pulsed exci- 
tation is dependent on the pulse frequency spectrum 
because of fields produced by induced currents in the 
magnet structure. We discuss this phenomenon quanti- 
tatively in terms of magnet performance optimization. 

Introduction 

The Los Alamos Proton Storage Ring (PSR) uses 
pulsed inflector magnets to distort the stored-beam 
orbit during accumulation to minimize interaction with 
an injection stripping foil and to manipulate beam 
phase-space distributions. For the high-intensity 
pulsed PSR beam, it was considered desirable to avoid 
using ferrite magnets in the ring to preclude reactive 
effects. An alternative, air-core magnets, provides 
lower inductances than ferrite-loaded structures but 
requires higher drive currents and has a more complex 
response to the drive frequency spectrum. Application 
of inflector magnets to the PSR and possible driver- 
circuitry design has been discussed.' Here we relate 
study results of a particular magnet form suitable for 
pulsed operation with several kiloamperes drive cur- 
rent and response times of several microseconds. 

Magnet Description 

The magnet type we discuss is shown in Fig. 1, 
where the relevant dimensions are defined. The magnet 
consists of one rectangularly formed turn with aper- 
tures in the ends for beam passage. The longitudinal 
electrodes have a radius on their inner surface for 
control of field homogeneity and the assembly is con- 
tained in a cylindrical vacuum chamber with radius R 
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Fig. 1. Type of single-turn magnet considered here. 
A prototype magnet was built with R = 7.2 cm, 
L = 48 cm, d = 7.6 cm, w = 10.5 cm and 
t = 0.2 cm. The measurements quoted in the 
text refer to this magnet. The chamber is 
stainless steel and the electrodes are cop- 
per, 1 cm thick at the edges. 

and thickness t. Although other configurations may be 
advantageous, the assembly shown in Fig. 1 features 
low inductance, ease of construction, 'and is capable * 
of high duty factors. A prototype has been construct- 
ed with dimensions as given ln Fig. 1. The copper 
sections were pinned together and heliarc brazed. The 
parallel-strip structure of the magnet leads is con- 
tinued with the vacuum feedthrough and strip-line con- 1 
ductors for current transmission from the driver. The 
magnet's low-frequency inductance is 20.3 uH and 
the dc resistance is 40 uR. 

Magnet Pulsed Behavior 

The frequency dependence of the field's real and 
imaginary parts for a unit drive current specifies the 
magnet frequency spectrum. We determine the spectrum 
by a theoretical model, and then are able to calculate 
the field produced for a specified current waveform. 
The results show a frequency-dependent response. 

Solution of the Diffusion Equation 

We consider the simplified two-dimensional model 
of the magnet shown in Fig. 2. Two very thin elec- 
trodes with symmetry about the x- and y-axes have 
equal and opposite currents flowing perpendicular to 
the figure and produce a field along the y-axis. Two 
infinite parallel conducting sheets of thickness t and 
conductivity u are located at y = +h. 

Neglecting displacement currents, the diffusion 
equation for a given frequency w is 

$Az a2Az 
- + ayZ - iuouWAZ = 0 
ax2 

, (11 

where AZ is the vector potential. The solution for 

the vector potential expanded in terms of the appro- 
priate eigenfunctions with the conducting sheets at 
y = +h removed is 

A- = 7 dk a(k) esky sin kx , 
L 

0 

for y > 0. A symmetric expression applies for y < 0. 
We assume that a(k) is determined by solution of 
Eq. (1) or from boundary conditions at the electrodes; 
several such configurations are analytically soluble. 
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We next decompose the vector potential for the full 
problem into two terms: the potential of the elec- 
trodes alone and the change in potential caused by the 
currents induced in the sheets. Call this latter term 

The induced field is expanded in the form 

. m 

Ai = j dk A(k,y) sin kx . 
0 

Substitution in Eq. (1) gives 

Y- 
O'A(k,y) = - ipoowe-ky a(k) , (4) 

where B2 = k2 - ipoow. The solutions of Eq. (4) are, 

for the respective regions I, II, and III (Fig. 2), 

A*(k,y) = b(k) cash ky , 

and 

AI1 

(k,y) = ul(k)e-DY + 02(k)eDY + emky a (k) , (5) 

(k,y) = c(k)eqky . 

Equating solutions and derivatives at the sheet bound- 
aries (y = h and y = h + t), we obtain four equations 
in the four coefficients of relations in Eq. (5). 
Solving for b(k) we find 

b(k) = a(k)eskh $$$-$ 1 ' -' + y tanh kh ' (6) 

where y = (1 + k/B tanh Rt)/(l + B/k tanh Rt). 
For numerical results, we consider the electrodes 

in Fig. 2 to be shrunk to points at x = +a, y = 0. 
For unit drive current, this gives 

pO a(k) = s sin ka . (7) 

Substituting Eqs. (6) and (7) into Eq. (3), we 
find a complex expression for the induced field as a 
function of frequency, conductivity, magnet dimen- 
sions, and coordinates. Evaluation shows weak depend- 
ence of the frequency spectrum form on electrode 
shape. 

Magnet Frequency Spectrum 

Considerations of the preceding section give the 
form of the field produced by the induced wall cur- 
rents. Magnitudes will depend strongly on geometry 
but we find that form does not. To predict the 
response of a given magnet to a current drive as a 
function of frequency, we first calculate the fields 
at low and high frequency using the magnet code 
POISSON and then normalize to the calculated spectrum. 

Results of this procedure for the prototype mag- 
net (assuming the wall conductivity is that of stain- 
less steel) are shown in Fig. 3. The experimental 
points were obtained with a small coil centered in the 
magnet and monitored by a lock-in amplifier. Measure- 
ments also were taken using a large coil, which inte- 
grated over the entire magnet length, with similar 
results. A small frequency effect (~6%) is seen 
for the bare magnet, that is, the assembly in Fig. 1 
with the vacuum chamber removed. Full scale in the 
figure corresponds to a field of 63 G/kA. 

The decrease in field with frequency for the bare 
magnet is caused by the redistribution of currents in 
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Fig. 3. 
In-phase and quadra- 
ture parts of the 
relative field (in 
the magnet center) 

P as a function of 
ld frequency. Solid 
i: lines are calculated 
w 
? OS- values whereas the 
2 crosses are pickup- 
d coil results for the (r 

magnet described in 
Fig. 1. The points 
labeled "bare mag- 
net" are for the 

DRIVER FREQUENCY (Hz) same magnet but 
removed from its 
vacuum chamber. 

the magnet electrodes, that is, an increase in current 
density toward the edges and inner surfaces. This 
effect is not predicted by our calculations because a 
definite current distribution is assumed. Addition of 
the vacuum chamber increases the frequency dependence; 
the magnet field is opposed by the wall currents it 
induces. The high frequency attentuation increases 
with vacuum-chamber proximity and wall thickness. The 
region in which the spectrum changes sharply, moves 
toward lower frequencies with increasing conductivity; 
the inflection point in the real part of the plot 
occurs at the frequency for which the skin depth is 
approximately half the wall thickness. 

Pulse Distortion 

Given the frequency spectrum, it is straight- 
forward to predict the field produced by a given drive 
pulse; the input current is Fourier analyzed and fold- 
ed into the spectrum. In Fig. 4 we show results of 
such a calculation for a magnet with the prototype 
dimensions and driven by a pulse whose rise is a pure 
exponential and whose fall is a linear combination of 
exponentials. The waveform is severely distorted from 
the shown linear response. Magnet response is such 
that the field amplitude is attenuated and the pulse 
tail is extended. The remedy for such distortion is 
to decrease wall thickness and to increase chamber 
radius; the high frequency attenuation then decreases 
asymptotically to the bare magnet case. For a vacuum 
chamber with diameter 2.5 times w (the magnet width), 

-03 00 MO 

TIME l,el 

Fig. 4. Relative fields versus time for an input- 
current waveform proportional to the upper 
curve that shows the linear response. The 
lower curve shows the response of the proto- 
type magnet. 



the pulse amplitude distortion is (12%. Of course 
if time scales are decreased, the distortion will be 
correspondingly greater. Additionally, distortion 
will occur if conducting or ferromagnetic surfaces are 
placed near the magnet. 

Magnet Electrical Parameters 

Figure 5 shows a terminal equivalent circuit for 
the magnet, which is merely the schematic equivalent 
for a transformer with primary inductance L, and 

resistance R, (representing the bare magnet) and 

secondary with corresponding parameters L2 and R2 

(representing the inductance and effective resistance 
of the chamber walls). Coupling between the circuits 
is described by the mutual inductance, M. The imped- 
ance of this circuit is 

the fit to the parameters in Eq. (8) was obtained from 
asymptotic measurements and the frequency spectrum. 
For the prototype magnet, R2 = 1400 pR, L2 = 0.33 pH, 

and M = 0.21 pH (increasing the chamber radius to 
13 cm reduces M to 0.04 pH). This result is shown 
in Fig. 5, where adjustment has been made for varia- 
tion of conductor resistance with frequency. 

Field Homogeneity 

A plot of data from measurements taken with a 
small coil that was moved along the magnet axis is 

shown in Fig. 6. The effective length of the magnet 
(based on the central field) is ~6% less than the 
physical length. The field cuts off sharply at the 
ends and has an (expected) bump at the ends that 
increases with frequency. 

Figure 7 shows POISSON calculations for the ratio 
of the sextupole field at the electrode radius to the 
dipole field, using the prototype geometry. The sex- 
tupole is defined here as positive when its field 
adds to the dipole field along an axis perpendicular 
to the electrodes. For very large electrode radius, 
r, the prototype magnet sextupole is 215%. These 
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Fig. 6. 
Plot of field as a 
function of distance 
along the axis for 
the prototype mag- 
net. The lead-in 
end is to the left 
in the figure. 

values do not include the end sextupole, which is neg- 
ative. However, measurements with a Morgan c0i1,~ 
which integrated over the entire magnet length, quali- 
tatively confirm the sextupole behavior and magnitude 
implied by the plot in Fig. 7 except for an anomalous 
increase at high frequencies. Close cancellation of 
the net sextupole is difficult, but may be approached 
by shaping the electrodes for a larger dc current den- 
sity at the electrode edges. This will bring the dc 
and intermediate frequency sextupoles closer in value. 
The value and sign then can be adjusted to cancel the 
end sextupole by further shaping. Higher order har- 
monics may need adjustment for certain applications. 
The high-frequency inhomogeneity is a wall effect and 
can be minimized with a large chamber radius. 
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Fig. 5. Magnet equivalent circuit and plot of imped- 
ances as a function of frequency. The solid 
line is a semiempirical fit to the circuit 
whereas the points are measurements. The 
dashed line is the impedance obtained 
directly from Eq. (8); the solid line has 
been analytically corrected for conductor 
skin effect. 

Fig. 7. 
Relative sextupole 
as a function of 
electrode radius, r, 
from POISSON calcu- 
lations. In the 
intermediate fre- 
quency case, we set 
the electrode vector 
potential constant. 
Additionally, for 
the high-frequency 
result, the field 
does not penetrate 
the walls. 
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