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T H. Takeda** 
Argonne National Laboratorjr 

Argonne, Illinois 6C439 

Summary 

Electrons are accelerated to 185 MeV by a micro- 
tron. Then, they are injected into another microtron 
to boost the net energy up to a feir GeV. Between the 
two microtrons both longitudinal and transverse phase 
space matching are required. 

In this paper, we consider a longitudinal phase 
ellipse matching which utilizes triple left-right- 
left sect0r dipoles to induce a negative phase angle 
shear. This is accomplished because a high energy 
particle travels a shorter distance through the dipole 
system than a low energy particle. 

Introduction 

As with the transverse phase space ellipse, 
matched acceptance longitudinal phase space ellipses 
are defined by Twiss parameters a; each point in a 
microtron characterized by an energy gain per turn and 
a synchronous angle. The energy width of the ellipse 
is proportional to the square root of energy gain per 
turn. Since the energy gain of 50 MeV by two linacs 
in the Double Sided Microtron (DSM) Is eight times that 
of the Race Track Microtron (RTM), the energy width of 
the ellipse for the DSM is approximately three times 
greater than i-hat of the RIM at the center of linac. 
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The beam is extracted at the return path of the 
at 185 MeV, passes through the longitudinal and 
transverse matching section, and is injected into 
short straight section (3%) of the 3SM. Due to 
symmetry, both acceptance ellipses are erect at 
extraction point and at the injection point. But, 

they differ in phase-angle-width and energy-width for 
the same phase area. 

The phase slip in the matching cavity and the 
longitudinal phase shear due to the velocity spread of 
the longitudinal ellipse at the matching section are 
negligible for the relativistic electron beam. Also 
the transverse matching quadrupole magnets are ortho- 
gonal to the longitudinal phase space. Hecce, the 
longitudinal phase ellipse is matched to a first order 
only by dipoles for the phase angle shear and by a 
matching cavity for the energy shear. 

It is generally considered that a sector dipole 
shears toward the positive phase direction for a posi- 
tive energy error. If a matching systen consists of 
only the positive phase angle shear element and an 
energy shear element, a strong energy shear toward the 
negative direction for a positive phase error is re- 
quired. Thus, the longitudinal phase ellipse can be 
matcned by a following positive phase angle shear. 
A disadvantage of this method is that the strong ener- 
gy shear coupled with the phase angle jitter of the 
matching cavity induces a large energy smear from 
pulse to pulse. 

However, with a negative phase angle shear system 
and a pre-positive phase angle shear in the beam up- 
stream, only a weak matching cavity is required. SO 

the phase ellipse can be b'etter matched. 

(Work performed under the auspices of the U.S. Depart- 
ment of Energy. 
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Right and Left Bend Dipole Matrix 

Defining dT and dt as off-momentum and on-momen- 
tum differential trajectories, the path length dif- 
ference between the trajectories in a system contain- 
ing deflecting ma&ne% is expressed as 

AR = jotdT - ,,"dt = &c/o dt. 

The transverse coordinate (x) on a bend plane is de- 
fined as positive if a particle is to the left of the 
reference trajectory. If the beam bends to the right, 
the radius of curvature p has a positive value. The 
reference trajectory path length (dt) and the bending 
angle (de) are related as 

dt =Ipld6 ,d3>0 (1) 
The transverse coordinate 

the trajectory is expressed as1 
(x) of a particle along 

x(t) = c(t> x0 + S(t) X;, + 3(t)@/F (2) 
Substituting Eq. 2 into Eq. 1, the path length 

difference may be expressed as 

At = x 
oi 

C(t)/p dt + x ; &t)/:: dt 

+ apipI,D(t)/p dt (3) 

Using Eq. 3, the full matrices including the path 
length difference term in the deflecting plane x are 
obtaked for a left bend sector dipole and a right 
bend sector dipole. 

Rsin r 0 R(l-cos r! 

r cos r 0 sin r 
3 = 

R R(l-cos r) 1 R(r-sin r) 

0 

D = (-l/R)sin i cos i 
L 

i 

cos i Rsin i 0 -R(i-cos i) 

0 -sin i 

-sin i -R(i-cos i ) 1 R(i-sin i) 

0 0 0 1 1 

For 2 single magnet, a higher momentum particle 
travels over a longer path length since the (hi, hp/p) 
element is positive. 

Negative Phase Angle Shear 
by a Left+Right+Left Bend(LRL) System 

If the beam transport section, which includes the 
negative phase angle shear system, is maintabled near 
achromatic, the first and second terms in Eq. 3 for 
the transport section may be ma&e negligible compared 
to the third term. 

This dispersion dependent term is evtiuated by 
multiplying the three sector dipole matrices for equal 
bend radii (R) and equal right and left bend angles 
(r). 

(AL , Ap/p) = f(r)*R 

where 

f(r) = sinr(l-cosr)(3*cosr-5)+sin3r+3(r-sinr) (4) 

As Figure 1 shows, the f(r) becomes negative near 
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r = 50 0 
and reaches a minimum near r = 120'. Then it 

increases rapidly and becomes positive. 
expressed as 

2 

When we separate the dipole magnets by equal 
drift (d), it contributes to the geometrical function 
f(r) by 

62 =(i+k2Llin) Go+ (kl + k2 + k~$Lli,, Vc,YB = 1/'?o f 

Y2 =Lli,' 60 + (1 + k 
(7) 

f dr = (d/R)sin*r{?lcosr-4-(d/R)sinr} . (5) 

The relation between angle of phase shear and 
difference in path length is 

A'? = + 2Tj(Xi3> *A!?" = h/(W) * R * f * &p/p (6) 

where X and B are linac wave length end particle velo- 
city in speed of light units, The negative geometri- 
cal funct:on implies a negative phase shear. 

u2 = -(I + k2L,in)60;,in - (k, + k2 + k k L ' 
1 2 Iin)' 

*(1 + k L 
1 lin 

) 

The ellipse parameters immediately after the 
cavitjr are 

n 
L 

Bi = Go+ kl y. 

Yi = L1i2n Go+ (1 + klL,in)2 Y. 

Longitudinal Phase Space Matching "i = -SoLlin - k,Yc(l + k L 
1 lin) 

Upstream of the matching cavity and dipole system, 
we induce a large phase angle shear. This is done by 
displacing the return path at 11?5 MeV in the RTM SO 

that the electrons, after the 1?Oo bend through the 
dipole, run parallel to the linac. Then the beam is 
once more positively phase angle sheared by another 
dipole followed by extraction. As will be explained, 
this pre-phase angle shear further redmes the required 
enercJ shear of the matching cavitjj. 

The phase ellipse is given by 

(6Q ,2 + (cc& + Bt6Wf = Ot' 

Since the dipole system shears only the phase 
angle, the half energy width of the ellipse must 
match the DSM (6W 

_s 
1. 

‘ii = 6 w$ 

Here, we formulate the matching procedures and 
obtain the matching conditions. In general, any dipole 
system can be expressed as a matrix 

Let us solve the second equation in (8} for L 
I CT n 

L. = 
-k,/GO +&,/fiOf - (Go+ k,%,)h -Y. )’ 

11n zo+ k,*/B, 1 k 
i ) 0 lt 

which operates on a vector consisting of a phase angle 
error and an energy error. 

k non-phase slip linac cavity is idealized as 

I1 o\ 
biin ? 

Le: us define D, as a two 18$ bend system end 
D2 as a negative,phase shear system. 'dl'th matching 
cav:ty strength tLljn), the longitudinal phase ellipse 
transformation matrix from RTM through the negative 
Send system is given as 

. T'DL 3 
2 linl 

k +k +k k L 
12 12lin 

i+klLlin i 
Since the longitudinal ellipse at the RTM return path 

L is errec,, the ellipse is expressed as 

= l/B 
0 

From the transverse phase space analogy, the 
longitudinal ellipse at the DSM is obtained from 

Thus the ellipse parameters at SSS of the DSM is 

(5) 

A positive sign is chosen for a positive energy kick. 
The relation Llin % l/k1 implies that the larger 

shear by the two 180' dipoles, the smaller the match- 
ing cavity strength. 

At the current state of the art, phase angles 
down to 1’ can be controlled for an s-band linac. 
The energy jitter due to phase jitter is 

Ejit(MeV) = AWkicka@(o) = r/i80 * Llin(MeV) 

Since energy jitter is proportional to Llin, the 
smaller matching cavity creates less phase jitter. 

The strength (k2) of the triple dipole system is 

obtained from solving the third of Eq. (7) setting 
d-=0. 

L 

k2 = 
-klYo(l + kiLlin) - BaLlin 

(soLTin + YO(l + k L 1 lin )" 

From Zq. (6), 6W/W e Ap/p and the definition 

k2 = Qsheas/ SW, th e bending radius (R) of the triple 

dipole is given as 

h w R=k2m 

Example 

For a system specified in Table 1, we calculate 
the parameters which match the longitudinal phase 
ellipses. They are shown in Table 2. 

Table I. Set-up Parar,eters. 

#s = 20 (Deg) : Ri'M Synchronous Angle 

,9, = 0.4532 (Rad/MeV) 

~5 = 3071 (KeV Deg) 
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kl = 2~/6(~ev) = 1.047 (RadheV) 

swg 
= 68.9 (KeV) 

r = 80 (Deg) 

Ta'de 2. Calculated Resulxs. 
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Llirl 
= 1.L612 (YeV) 

k2 = -0.4312 (Rad/MeV) 

E jit = 25.5 (KeV) 

R (en) d/R 
50 0.4702 

6~ 0.3372 

73 0.2365 

B (ki;) 

12.34 

10.29 

8.83 

Fig. 1. GeometricaL Factor 
(No Drift) 
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