LONGITUDINAL PHASE SPACE MATCHING BETWEFN MICROTRONS AT 185 MEV*

H. Takeda**
Argonne National Laboratory
Argonne, Illinois 60439

Summary

Electrons are accelerated to 185 MeV by a microtron. Then, they are injected into another microtron to boost the net energy up to a few Gev. Between the two microtrons both longitudinal and transverse phase space matching are required.

In this paper, we consider a longitudinal phase ellipse matching which utilizes triple left-rightleft sector dipoles to Induce a negative phase angle shear. This is accomplished because a high energy particle travels a shorter aistance through the dipole system than a low energy particle.

Introduction

As with the transverse phase space ellipse, matched acceptance longitudinal phase space ellipses are defined by Twiss parameters at each point in a microtron characterized by an energy gain per turn and a symchronous angle. The energy width of the ellipse is proportional to the square root of energy gain per turn. Since the energy gain of 50 MeV by two linacs in the Double Sided Microtron (DSM) Es eight times that of the Race Track Microtron (RTM), the energy width of the ellipse for the DSM is approximately three times greater than that of the RTM at the center of linac.

The beam is extracted at the return path of the RTM at 185 MeV , passes through the longitudinal and the transverse matching section, and is injected into the short straight section (SSS) of the JSM. Due to its symmetry, both acceptance ellipses are erect at the extraction point and at the injection point. But, they differ in phase-angle-wid.th and energy-width for the same phase area.

The phase slip in the matching cavity and the longitudinal phase shear due to the velocity spread of the longitudinal ellipse at the matching section are negligible for the relativistic electron beam. Also the transverse matching quadrupole magnets are orthogonal to the longi udinal phase space. Hecce, the longitudinal phase ellipse is matched to a first order only by dipoles for the phase angle shear and by a matching cavity for the energy shear.

It is generally considered that a sector dipole shears toward the positive phase direction for a positive oncrgy error. If a matching syster consists of only the positive phase angle shear elenent and an energy shear element, a strong energy shear toward the negative direction for a posllive phase error is required. Thus, the longitudinal phase ellipse can be matcned by a following positive phase angle shear. A disadvantage of this method is that the strong energy shear coupled with the phase angle jitter of the matching cavity induces a large energy smear from pulse to pulse.

However, with a nogative phase angle shear system and a pre-positive phase angle shear in the beam upstream, only a weak matching cavity is required. So the phase ellipse can be better matched.

[^0]Defining $d T$ and $d t$ as off-momentium and on-momentum differential trajectories, the path length difference between the trajectories in a system containing deflecting magnets is expressed as

$$
\Delta l=\int_{0}^{t} d^{\prime} l^{\prime}-\int_{0}^{t} d t=\int_{0}^{t} x / \rho d t
$$

The transverse coordinate (x) on a bend plane is defined as positive if a particle is to the left of the reference trajectory. If the beam bends to the right, the radius of curvature ρ has a positive value. The reference trajectory path length (dt) and the bending angle ($d \theta$) are related as

$$
\mathrm{d} t=|p| d \theta \quad, \mathrm{~d} \theta>0
$$

The transverse coordinate (x) of a particie along the trajectory is expressed as 1

$$
\begin{equation*}
x(t)=C(t) x_{0}+S(t) x_{0}^{\prime}+D(t) \Delta p / p \tag{2}
\end{equation*}
$$

Substituting Eq. 2 into Eq. 1, the path length difference may be expressed as

$$
\begin{align*}
\Delta l=x_{0} \int_{0}^{t} \mathrm{C}(\mathrm{t}) / \rho \mathrm{d} t & +x_{0}^{\prime} \int_{0}^{t} \mathrm{~S}(\mathrm{t}) / \mathrm{d} d \\
& +\Delta \mathrm{p} / \mathrm{p} \int_{0}^{t} \mathrm{D}(\mathrm{t}) / \mathrm{p} \mathrm{dt} \tag{3}
\end{align*}
$$

Using Eq. 3, the full matrices including the path length difference term in the deflecting plane x are obtained for a left bend sector dipole and a right bend sector dipole.

$$
\begin{aligned}
& D_{R}=\left[\begin{array}{cccc}
\cos r & R \sin r & 0 & R(1-\cos r) \\
(-1 / R) \sin r & \cos r & 0 & \sin r \\
\sin r & R(1-\cos r) & 1 & R(r-\sin r) \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
x^{\prime} \\
\Delta x \\
\Delta p / p
\end{array}\right] \\
& D_{L}=\left[\begin{array}{cccc}
\cos i & \text { Rsin i} & 0 & -R(1-\cos i) \\
(-1 / R) \sin \equiv & \cos i & 0 & -\sin i \\
-\sin i & -R(1-\cos i) & 1 & R(i-\sin i) \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

For a single magnet, a higner momentum particle Fravels over a longer path length since the ($\Delta l, \Delta \mathrm{p} / \mathrm{p}$) element is positive.

> by a Negative Phase Angle Shear

If the beam transport section, which includes the negative phase angle shear system, is maintained near achromatic, the first and second terms in Eq. 3 for the transport section may be made negligible comparod to the third term.

This dispersion dependent term is evaliatea by multiplying the three sector dipole matrices for equal hend radii (R) and equal right and left bend angles (r).

$$
(\Delta Q, \Delta p / p)=f(r) * R
$$

where

$$
f(r)=\sin r(1-\cos r)\left(3^{*} \cos r-5\right)+\sin ^{3} r+3(r-\sin r)
$$

As Figure 1 shows, the $f(r)$ becomes negative near
$r=50^{\circ}$ and reaches a minimum near $r=120^{\circ}$. Then it increases rapldly and becomes positive.

When we separate the dipole magnets by equal drift (d), it contributes to the geometrical function $f(r)$ by

$$
\begin{equation*}
f_{d r}=(d / R) \sin ^{2} r\{4 \cos r-4-(d / R) \sin r\} \tag{5}
\end{equation*}
$$

The relation between angle of phase shear and difference in path length is

$$
\begin{equation*}
\Delta \phi=+2 \pi /(\lambda B) * \Delta \ell=2 \pi /(\lambda \beta) * R * f * \Delta p / p \tag{6}
\end{equation*}
$$

where λ and β are linac wave length and particle velocity in speed of light units. The negative geometrical function implies a negative phase shear.

Longitudinal Phase Space Matching

Upstream of the matching cavity and dipole system, we induce a large phase angle shear. This is done by displacing the retum path at 185 MeV in the RTM so that the electrons, after the 180° bend through the dipole, fur parallel to the linac. Then the beam is once nore positively phase angle sheared by another dipole followed by extraction. As will be explained, this pre-phase angle shear further reduces the required energy shear of the matching cavity.

Here, we formulate the matching procedures and obtain the matching conditions. In general, any dipole system can be expresscd as a matrix

$$
\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right)
$$

which operates on a vector consisting of a phase angle error and and energy error.

$$
\left(\begin{array}{ll}
\Delta & \phi \\
\Delta & W
\end{array}\right)
$$

A non-phase slip linac cavity is idealized as

$$
\left(\begin{array}{lll}
1 & & 0 \\
L_{\operatorname{lin}} & 1
\end{array}\right)
$$

Let us define $D_{\text {, }}$ as a two 180° bend system and 1_{2} as a negative phase shear system, With matchirg cav́ty strength (L_{1} in), the longitudinal phase ellipse transfomation matrix from RTM through the negative bend system is given as

$$
\begin{aligned}
& T=\underset{2}{D_{\text {i in }}} \underset{\sim}{\square}=\left(\begin{array}{ll}
1 & k_{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
L_{\text {in }} & 1
\end{array}\right)\left(\begin{array}{ll}
1 & k_{1} \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1+k_{2} L_{1} \text { in } & k_{1}+k_{2}+k_{1} k_{2} L_{1 i n} \\
L_{1 \text { in }} & 1+k_{1} L_{1 i n}
\end{array}\right)
\end{aligned}
$$

Since the longitudinal ellipse at the RTM return path is errect, the ellipse is expressed as
where $(\varepsilon \phi)^{2}+\left(\beta_{0} \delta W\right)^{2}=\beta_{0} \varepsilon_{0}$
where $\sigma_{0}=\left(\begin{array}{cc}\beta_{0} & 0 \\ 0 & \gamma_{0}\end{array}\right)$

$$
\text { , } \gamma_{0}=1 / \beta_{0}
$$

From the transverse phase space analogy, the longitudinal ellipse at the DSM is obtained from

$$
\left(\begin{array}{cc}
\beta_{2} & -\alpha_{2} \\
-\alpha_{2} & \gamma_{2}
\end{array}\right)=T 0_{0} T^{T}
$$

Thus the ellipse parameters at SSS of the DSM is
expressed as
$\beta_{2}=\left(1+k_{2} L 1 i n\right)^{2} \beta_{0}+\left(k_{1}+k_{2}+k_{1} k_{2} L{ }_{1 j}\right)^{2} \gamma_{0}, \gamma_{0}=1 / \rho_{0}$
$Y_{2}=L_{1 i n}^{2} \beta_{0}+\left(1+k_{1} L_{i n}\right)^{2} Y_{0}$
$a_{2}=-\left(1+k_{2} L_{1 i n}\right) B_{0} L_{1 i n}-\left(k_{1}+k_{2}+k_{1} k_{2} L_{1 i n}\right) Y_{0}$
$*\left(1+k p_{1 i n}\right)$
The ellipse parameters imnediately after the cavity are
$\beta_{i}=\beta_{0}+k_{1}^{2} \gamma_{0}$
$\gamma_{i}=L \sum_{1 i n}^{2} \beta_{0}+\left(1+k_{1} L_{i n}\right)^{2} \gamma_{0}$
$\alpha_{i}=-B_{0} L_{1 i n}-k_{\eta} \gamma_{0}\left(1+k_{\eta} L_{\text {in }}\right)$
The phase ellipse is given by
$(\delta \phi)^{2}+\left(\alpha_{t} \delta \phi+\beta_{t} \delta W\right)^{2}=\beta_{t} \varepsilon$
Since the dipole system shears only the phase angle, the half energy width of the ellipse must match the $\operatorname{DSM}\left(0 \mathrm{~W}_{\mathrm{g}}\right)$.

$$
\gamma_{i}=\delta w_{g}^{2} / \varepsilon
$$

Let us solve the second equation in (8) for L

A positive sign is chosen for a positive energy kick. The relation $\mathrm{L}_{1 \text { in }}{ }^{\sim} 1 / \mathrm{K}_{1}$, implies that the larger shear by the two 180° dipoles, the smaller the matching cavity strength.

At the current state of the art, phase angles down to 1° can be controlled for an s-band linac. The energy jitter due to phase jitter is

$$
E_{j i t}(\mathrm{MeV})=\Delta W_{k i c k} \Delta \phi(0)=\pi / 180 * I_{\text {in }}(\mathrm{MeV})
$$

Since energy jitter is proportional to Lyin, the smaller matching cavity creates less phase jitter.

The strength (k_{2}) of the triple dipole system is obtained from solving the third of $\mathrm{Eq} .(?)$ setting $\alpha_{2}=0$.

$$
k_{2}=\frac{-k_{1} \gamma_{0}\left(1+k_{1} \tau_{1 i n}\right)-\beta_{0} L_{1 i n}}{\beta_{0} L_{l i n}^{2}+\gamma_{0}\left(1+k_{1} L_{l i n}\right)^{2}}
$$

From Eq. (6), $\delta W / W \simeq \Delta p / p$ and the definition $k_{2}=\delta \phi_{\text {shear }} / \delta W$, the bending radius (R) of the triple dipole is given as

$$
R=k_{2} \frac{\lambda}{2 \pi f}
$$

Example

For a system specified in Table 1, we calculate the parameters which match the longitudinal phase ellipses. They are shown in Table 2.

Table 1. Set-up Paraneters.
$\phi_{s}=20$ (Deg) : RrM Synchronous Angle $\beta_{0}=0.4532(\mathrm{Rad} / \mathrm{MeV})$ $\pi \varepsilon=30 \pi(\mathrm{KeV} \mathrm{Deg})$

$$
\begin{aligned}
\mathrm{k}_{1} & =2 \pi / 6(\mathrm{MeV})=1.04 ?(\mathrm{Rad} / \mathrm{MeV}) \\
8 \mathrm{~N}_{\mathrm{g}} & =88.9(\mathrm{KeV}) \\
r & =80(\mathrm{Deg})
\end{aligned}
$$

Table 2. Calculated Results.

$$
\begin{aligned}
I_{1 i n} & =1.4612(\mathrm{MeV}) \\
\mathrm{k}_{2} & =-0.4312(\mathrm{Rad} / \mathrm{MeV}) \\
\varepsilon_{\text {jit }} & =25.5(\mathrm{KeV})
\end{aligned}
$$

$R(\mathrm{~cm})$	d / R	$B(\mathrm{kG})$
50	0.4702	12.34
60	0.3372	10.29
70	0.2365	8.83

Fig. 1. Geometrical Factor

Fig. 2. Drift Geometrical Factor.

(No Drift)

(Deg.)

References

1. Klaus G. Steffen, High \#nergy Beam Optios, John Wiley \& Sons, New York (1965).

[^0]: *Work performed under the auspices of the U.S. Department of Energy.
 ** Current address is KMS Fusion, Inc., Ann Arbor, MI 48106

