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Abstract 

A theoretical description of the time-evolution of 
a bunched beam subjected to stochastic cooling is pro- 
vided. 

1. Introduction 

Bunched beam stochastic cooling differs non-trivially 
from continuous coasting beam cooling1’2’5. A primary 
manifestation of the differences is a qualitatively 
distinctive frequency-space structure of the spectrum 
of incoherent and collectively modulated Schottky sig- 
nals derived from, and experienced by the particles in 
a bunch. We start then with a study of the bunched 
beam Schottky signal. In the following, xj = Aj 

cos(Qogt + Pj”) represents the linear betatron oscilla- 
tion and 

8.=wot +a 
J 

j si4ws(aj! t + ej”] = w&t- Tj(f)] 

represents the quasilinear synchrotron oscillation, with 
the usual meaning of the spbols. The particle index j 

in the argument of a function f(j) will denote a part 
or the whole of the complete set of action-angle varia- 
bles of particle j : (_Ij;$j) = (IxJ,I,J,JJ; exJ,+,J,$J) 
with Ix z = (h)A$ and 3 = (k)a’. The dependence of 
synchro;ron oscilittion frequency on amplitude for non- 
linear oscillations is expressed by the function ws(aj). 

2. Spectral properties of bunched beam Schottky signals 

Schottky signals derived from a distribution of 
particles in a bunch on repeated traversals through a 
localized PU at azimuth 0 = BP, have the following 
spectral representations1 p * : 

N,(w) 
d(t) = qf, 

c (Aj/2) Jp (m + Q)aj - Q(</n)aj 

j=l,(m,L)=(-m) ,(i) 
1 

x eii$ft( j)t+i@:+iv$:-imOp 

for the transverse dipole moment signal and 

N,(+=J) 

1(t) = qfa 
c J,,(maj) e 

iR m,L( j) t+ip$g-imap (‘) 

j=l,(m,p)=(-) 

for the longitudinal current signal. The relevant fre- 

frequency of the particles, 5 and ri the chromaticity and 
the off-energy function respectively (AQ/Q~ = c(Ap/pa) = 
= (</fl)(Af/fo))and J,,(x) an ordinary Bessel function of 
order ‘J. The spectrum analyzer records two betatron 
bands centered around (m + Q)fo and(m-Q)fo per revolu- 

tion band in real positive frequency. 

For initial betatron phases $1 rfndomly distributed 
between 0 and 2n, one easily verifies that the trans- 
verse di ale moment signal satisfies <d(miQ)> = 0 and 
d&$> = (N/?)q’f?+A*>, same as for a coasting beam, 

> denotes average over the distribution of par- 
ticles. The spread in th,a+ye”a;;; Flat;;;t;;dt;;l 
sidebafdaA;re grven by ASm;p 
oq)p d respectively. 

. 

mag;itudes Only for p < ma, 
Since J,(ma) has significant 
the synchrotron side-band 

spectrum extends up to !+aw,(O) % mamws(0) = m&dam) where 

*) Work performed at Lawrence Berkeley Laboratory, 

am is the maximum synchrotron amplitude in the bunch. 
The total spread in revolution harmonic band m thus ap- 
proaches the value for a coasting beam with frequency 
spread Au:&, = mAo and A$,‘) = mA9 i- Qo(</Tl)il~c. = 
= (ml^l i: Qa<)wo(Ap/po). The profile of the Schottky band 
at a given harmonic mfo duplicates the longitudinal 
velocity distribution of the bunch. For low revolution 
harmonics m, the noise density of synchrotron side-bands 
is enhanced by rli = ~s/(~‘ows) compared to a coasting 
beam, until the side-bands overlap, i.e. ?p < 1, for 
large m. In this overlapped region, different particles 
with different oscillation amplitudes generate the same 
frequency n through different s)-nchrotron harmonics’: 
R = mulo + urn,(a) = moo + u’w,(a’) = . . . etc. 

For still higher harmonics m, even the revolution bands 
start to overlap, i.e. R = mo + pw,(a) = nLiO + li’fds(a’) 
= . . . with m # n, n # p’, a # a’. For the longitudinal 
signal, an essential difference in the distribution of 
power is that <Im> = qfON # 0, and more importantly 

(,/I:\) = q’fi( N + [; JO(maj)]‘} 

j=l 

(3) 

Thus the u = 0 central bands add up coherently (O(Y’)) 
as opposed to the 1: # 0 bands which add up incoherently 
(Schottky noise power = N) in the mean square. It is 
implicit in any bunched beam cooling scheme that the 
central coherent longitudinal lines, undesirable for 
purposes of cooling incoherent motion, be removed by 
suitable techniques, which is a non-trivial task. The 
electric field at the kicker, Fourier transformed to 

frequency domain, is given by [from Eq. (l)] 

N.(+==’ 

kOuo = qf, 
‘C ’ 

(Aj/2) Jp (m 2 Q)aj - Q(:/‘l)aj 

j=l,(m,ll)=(-),(i) 
1 

(4) 

and similarly for longitudinal voltage signal1 from 

Eq. (2). The transfer function G above includes the 
amplifier gain as well as PU and kicker transverse 
impedances. 

The above analysis assumes no correlations between 
particle trajectories. The cooling feedback loop itself 
introduces correlations between particles, which are 
propagated by the beam back to the pick-up which thus 
sees the Schottky signal distorted away from the un- 
correlated form. A Vlasov analysisl,: describes the 
actual collectively modulated signal E(i2) at the kicker 
as follows: 

(+-) 
(5) 

E(n) = c D,(n)E(a + ktio) + E’(i:) 

ka.‘m 

where Dk(R) is a complicated kerne11v3. In the situa- 

tion of no synchrotron band overlap, the effect can be 
approximately described by a local signal suppression 
factor ~~(+)(a) f or each synchrotron mode i-~ separately 
as1,3 

.p (a) = x(+)O(a),E(t) (a) (61, 
u J ii 
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where 

and 

(n + Q)a - Q 5 a Ej”m,p a ) e-inek ( W( ) 

n 

;;++a) = 1 + q200/2(2~)'Q )(;rNfo(.)/j~l 121) 

+,=J 

x 1 c[Q~~~(~)) ;;[(m + Q)a - ~(~/n)a] 

m=-m 
(7) 

and a similar factor ~~(a) for the longitudinal signal 
suppression1y3. A general inversion of the coupled 
mode Eq. (5) in the situation of synchrotron band over- 
lap for high frequencies has not been obtained yet. 
However, except for the coherent u = 0 central longitu- 
dinal lines, the spectral properties of bunched beam 
Schottky signal at high frequencies become indistin- 
guishable from a coasting beam signal. Information 
about the bunched nature of the beam is however retained 
by the correlated Schottky harmonic structure, expressed 
by summation over m in Eq. (7), of the overall gain 
experienced by a particle. Same synchrotron mode u in 
neighbouring revolution bands m remain correlated owing 
to the same phase exp (ivti”) and similar strengths 
.J,(Ca) [see Eq. (2)] until La 2 TT. This correlation 
thus dominates over a range in I? of n/a which is the 
bunching factorl.z' 3. Equivalently, we may interpret 
this as an enhanced effective number of particles 

Neff = N(To/t3) = NV/~, where to is the bunch duration. 
We thus expect a coasting beam like suppression factor4 

N effG[(n+ Q)o] 

E[(n i Q)IJJ] = 1 + 
/ 

dw' f(0') 

In 2 Q1 7 + i(w-w') 
TO+ 

N ef,G[h~Q)w) 
=1t---- (8) 

4A(n 2 Q/ 
to be valid for a bunched beam with total longitudinal 
frequency spread of 2A. 

3. The Fokker-Planck description of cooling 
in action-angle variables 

The equation of motion for any degree of freedom 
5; E(xi,Zi,ei) with corresponding oscillation frequency 
wi E(WXi,WZi,Wsi) of particle i that samples the signal 
E(t) at the kicker periodically is 

?$ + “ZEi = 4 
n=--m 

(9) 

where s(t) has a self-action contribution of particle i 
sampling the amplified version of its own signal at the 
PU and a Schottky noise contribution of sampling signals 
from all the other particles: 
= c(i,i) + s(i;t). 

s(t) = c(i,i)+ Ej#iS(i,j(t)) 

In the adiabatic approximation of 
slow cooling, s(t) is a small quantity and one can use 
a multiple time-scale perturbation analysis1 to obtain 
the following equations of motion for action-angle: 

fi= G'(i,i) + G'(i;t) 

iq, 
(10) _ 

= -- 
w. 

dei sin Jli c(i,i) +sin $;s(i;t) 
1 

1 
- (1/2n) 
ail [ 

i) + Hl(i;t) = wi 

2rr 

J 

d~i COS pi C ( 
0 

i,i) + cos Gis( i;t) (11) 1 
Using Eqs. (4). (9), (lo), (11) and Fourier series ex- 
panding in the periodic angle variables JI, one can in 
general write the cooling equations of motion in canoni- 
cal action-angle variables in all three dimensions as 1 

i = 
-i c 

G -c,-n C;EiJi) ' 1 c 1 Gn,n';k(Ii'Ej) 

n j#i n,n' k I - - . 

X e i(F*ki+"'*?j) eikwot 
(12) 

ii = 
1 !!,,-,'Ei'Li) ' c c 1 ?n,n';k(ti'Ij) 
n j$i n,n' k - - 

i(n*W.+n'.tj) eikw,t 
Xe ,,I- + pi . (13) 

Since a particle is affected only by those other par- 
ticles which are its close neighbours in frequency, two 
particles i and j will influence each other provided 
the resonance condition (n _C Q)wO + pm,(i) = 
= (m ?: Q)un + vo(j) is satisfied. Under the assumption 
of non-overlapping betatron and revolution bands, only 
the (n + Q) = (m C Q), VW,(~) = VW,(~) resonances are 
of interest,and the higher order overlapping resonances 
give rise to rapid fluctuations in time which can be 
averaged out (k = 0) for slow time-dependencesl. 
Equations (12) and (13) then describe cooling equations 
in terms of particle action and angle variables alone, 
with no explicit time-dependence. However, each inter- 
action harmonic Gnn, will have an intrinsic sum over all 
the revolution harmonics mwg inside it reflecting the 
bunched structure of the beam'. In general n : (%,n,,u) 
and representations (12) and (13) allow coupiing of 
degrees of freedom through the cooling interaction. 
Explicit expressions for the interaction harmonics can 
be obtained by using Eqs. (4), (9), (10) and (11) as1 

(qf012K - 
G&J,J') = - 

us(J) 
c ($) (Q&J’)] 

m=-m 

X Jli(m&)JV(-mm) eim(ep+3k) (14) 

for longitudinal cooling [K = dw(E)/dE, the machine 
parameter1 and 

G(') = (JiJiT/ZQwo)'(qfs) gP,, 
W 

2 %,JV 

= [(qf,)2/2Qw, 

x .$ (m i Q)J;;3-; -i$ j2J' 1 eim(ep-ek) 

x.l Q1sZ-j - Q 5 d?i 1 (15) 

for transverse dipole cooling in the betatron non-overlap 
region [n,nlJ = I( u,+l);(u,-1)) or {(u,-l);(v,+l)I. 
One also verifies1 that the dynamics, without the 
dissipative self-action'term, satisfies the Hamiltonian 
flow condition 
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Dynamic signal suppression occurs much before any 
significant cooling time, but is expected to be esta- 
blished in a synchrotron oscillation period: 

Ts % ‘Icoh <’ rcool. In the non-overlapping synchrotron 

band region, the effect’ ’ r.s to reduce the first term in 

Eq. (21) by ~6%) and the second term by 1 c/j’) (J) 1’. 
Amplifier noise also gets suppressed by \e$t)(J)(2. 
With symmetries in the expression (7) for ~6’) (J) , one 

obtains after algebraic combinations, the following’ 

v(J) = [q%&(2n)‘Q-j c c {g~ii_(~,J)/~:::=)(J)l’} 

(‘1 lJ (24) 

and similarly for X(J), thus completing the theory in 
the synchrotron band non-overlap region, including sig- 
nal suppression. In the synchrotron band-overlap region 
a.fp;actical evaluation of F, D and the time-evolution 

, is complicated even with neglect of the signal 
suppression owing to the strong non-local coupling in 
action space (I,J) ++ (I’, J’) implied by band overlap. 
A quick estimate may follow however by appealing to 
conjecture (8) and simply using the coasting beam 
expression4 for cooling with enhanced effective number 
of particles Neff: 

W3$ * 
1 

ii - G(i,i) 1 =-mqJ;) - [si - F!i,i’l (16) 

A hierarchy of characteristic time-scales is pro- 
vided by the revolution and oscillation time-periods 
(TO,T~ = Zrr/wg, ‘I, = 2~/w,), the relaxation time ‘cool 
of the particle distribution, the phase-space mixing 
time ~,ix and the coherent Schottky signal suppression 
time Tcoh. From Section 2, we have (Tmix)-’ s i~Aw, s 
% b/dw,/da!a,,, in the situation of no synchrotron band- 
overlap and s ;iq % mAiu in the situation of overlap. 
With considerable mixing within one synchrotron period, 
we have the model of a classical Brownian particle damp- 
ing steadily under the ‘sure’ coherent cooling forcerE” 
and diffusing under the Schottky fluctuation force G (t) 
with a hierarchy T~,TB < T,;, < T, << ;cool. A classical 
fluctuation theory or equivalently canonical kinetic 
theory in phase-space, together with Eq. (16), can then 
be used to describe the time-evolution of the angle- 
averaged one-particle distributiyn in the form of the 
following Fokker-Planck equation 

g (1;t) = - & -, +;)t(f;tj +&g. [+;f) .z$] 

where 
(17) 

F(I) = G”(‘,z) = -I . 
n - 

(18) 

m 

D(I;f) = 2 /- d7 :IG’(I(t),~(t);t)G’(I(t-~),‘~(t-T);t-T)) 
: - i ‘-- - -- 

‘3 

= 2FN ,($+n,(I,I’) 
I - 

-- I 
- . 

x “[TJ * W(I) + “’ * “C&‘,] (19) 
- x 

neglecting the Schottky signal suppression effect. In 

general F and ; are non linear functions of I and sep- 
arate equations for moments do not exist. However, for 
linear transverse dipole cooling only in the regime of 
no synchrotron band overlap, one has F(I,J) = a(J 
D(I,J;f) = S(J)I<I> and an exponential type cooling 
equation obtains fez the first moment <I>(J) = 
= (l/2)cA2>(.J) =0/ dL*I.f(I,J) in the form’ 

-d- <I>(J) = -y(~) = - a(J) - (1/2)8(J) 1 
<I>(J) dt c 1 (20) 

with 

x IrN[q200/2(2n)2Q] 

x fo(J)[\u!(dos/dJ)J , --I /g;‘i$(J,J) 
2 

11 (21) 

Amplifier noise, uncorrelated with particles -, causes 

extra diffusion with coefficient given by a similar 
analysis as D 

noise 
(I,.J) = X(J)1 where’ 

where P(I1) is the power spectrum of the amplified (22) 
amplifier noise at the kicker. Evolution of <I>(J) 
then is given by1 

<I>(:;t) = [<I>(J,o) - <I>(J;~)] e -y(J)t 
+ cI>(J,~) (23) 

with asymptotic noise-dominated equilibrium given by 
<I>(J,m) = [X(J)/2v(J)]. 

-__ 
Y=-c 1 [2G[in* Q)u]/~ 1 +(G[(ni QhBeff / 4A/nf Qi)i’] 

C-t) n>O (25) 

Use of this equation is equivalent to replacing bunched 
beam cooling with an equivalent coasting beam cooling 
with bad mixing (no revolution or betatron band overlap). 
Synchrotron band overlap as well as the corresponding 
signal suppression [see denominator in Eq. (25)] is re- 
tained in full strength and the effect of bunching 
appears in N eff. The expression is ideally appropriate 
for a bunch in a flat square bucket with perfectly 
reflecting walls1,3,5. 

4. Discussion 

We note that in the limit of vanishing synchrotron 
frequency spread, dw,/dJ + 0, i.e. no mixing in longi- 
tudinal phase-space, there is no synchrotron band over- 
lap and from Eqs. (6) and (7) we observe that the signal 
suppression factor tends to be large, eventually fully 
screening the Schottky signals to zero by coherent feed- 
back through the beam. No useful residual Schottky sig- 

(24) we find that the cooling 
The noise concentration 

at synchrotron side-bands is infinitely large and from 
Eq. (21), this leads to infinitely fast heating or dif- 
fusion prior to the full establishment of signal sup-- 
pression. It is thus crucial that one introduces mixing 
either by filling the bucket reasonably or by adding 
higher harmonic cavities. In addition to the above con- 
siderations of mixing, the removal of the !.I = 0 central 

coherent longitudinal lines and need for high frequency 

large bandwidth systems (both to probe deeper into the 
bunch and to handle the enhanced effective number Of 
particles) form the singularly distinctive features of 

bunched beam cooling. 
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