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Summarl 

We have derived the hierarchy of moment equations 
that describes the dynamics of charged particle beams 
in linear accelerators and can truncate the hierarchy 
at any level either by discarding higher moments or by 
a cumulant expansion discarding only correlation func- 
tions. We have developed a procedure for relating 
the density expansion linearly to the moments to any 
order. The relation of space-charge fields to the 
density has been derived; and an accurate, systematic, 
and computationally convenient expansion of the 
resultant integrals has been developed. 

Introduction 

The dynamics of charged particle beams involves a 
large number of degrees of freedom; consequently, the 
solution of the equations of motion and the interpre- 
tation of solutions is quite difficult. The approxi- 
mate reduction of the equations of motion to a finite 
system, in analogy with reduction of the equations for 
a solid body to Euler equations, would be very useful 
both for numerical computation and for intuitive 
interpretation. However, because a charged particle 
beam is not a perfect solid body, even in phase space, 
it is important to correct systematically the lowest 
order equations to any desired order. 

How to derive moment equations to describe beam 
dynamics in three dimensions to any arbitrary order is 
shown in this paper. The truncation of these equa- 
tions at any order is discussed, and how to compute 
space-charge forces in terms of the moments consis- 
tently to the same order is shown. 

Basic Equations 

For simplicity, let us consider nonrelativistic 
beams in which the space charge is well described by 
electrostatic forces. Also, we ignore the effects of 
walls and of particle collisions. None of these 
approximations are essential to our development, but 
are reasonably well satisfied for some low-energy 
proton linacs. Thus the equations we derive, besides 
being simple, are directly applicable to some 
machines. With these assumptions, the beam obeys the 
Vlasov equation 

af 
,+;-a; af t $ (Ft t qQ * af = 0 

a: 
, (1) 

where f(?,$,t) is the distribution function in phase 
-+' 

space, m is the mass of the particles, F(x,t) is the 
external force caused by the accelerating and focusing 

structure, and z is the space-charge electric field 
that satisfies 

$ - r: = 4nq f d; f(;,;,t) . (2) 

If we denote the total number of particles by N, then 

integrating Eq. (1) over 2 and : gives 
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d Jy <x.v.> = <v.v. 
1 3 1 J 

> +; <xi(Fj + qEj)> , and (8) 

d 1 x <ViVj> = iji <Vi (Fj + qEj)> +A <vj(Fi + qEi)> . (9) 

Let us make several comments about these equa- 
tions. 

-. 
tirst, note that Eqs. (5)-(g) are exact and 

thus can be used directly to check particle simulation 
codes. Next, note that the forces depend on the spa- 
tial variables, and thus Eqs. (5)-(g) are not closed 
unless the forces are spatially linear. The assump- 
tion of linear forces gives the lowest significant 
truncation of the moment equations. Let us note that 
the second-order moments have a fairly direct physical 
interpretation. In the center of mass frame of refer- 

ence, <x2> is the width of the phase space "ellipse," 

<v2> is its height, and <xv> is proportional to the 
tangent of the angle of the "ellipse" with respect to 
the axis. The description of the phase-space distri- 
bution in terms of ellipses is not exact, of course; 
in fact it corresponds exactly to the truncation of 
the moment equations at second moments, that is, to 
the approximation of linear forces. Finally, let us 
note that in the approximation of linear forces, it 
is easy to see that in the center of mass we have 

where we ignore possible losses to the walls. If 

g(z,;,t) is any function defined on phase space, let 
us define an average by 

<g> E 4 / d;d; g(;,;,t) f(;,<,t) . (4) 

Note that <g> remains a function of time. 
Multiplying Eq. (1) by xi (the ith component 

of the spatial variable) and integrating over phase 
space, we find (see Appendix) 

d<xi> 

dt = <v.' ; 1 
(5) 

that is, the center of mass moves' at the average 
velocity. Multiplying Eq. (1) by Vi and integrat- 
ing, we find 

d<vi> 1 
dt= m<Fi + qEi> ; (6) 

that is, the average acceleration is the average of 
the forces over the mass. 

Multiplying Eq. (1) by xixj, xivj, vivj and inte- 

grating we obtain, respectively, 

GE ij 
<x x > = <x.v.> + <x.v.> , 

1 J J 1 (7) 

$(<x2><v;> - <XVx>2) = 0 ; (10) 

that is, emittances are preserved. Thus emittance 
growth can result only from nonlinear forces. 
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The extension of the moment equations to arbi- 
trary order proceeds as before and is perfectly 
straightforward. Let us write out the third moment 
equations explicitly: 

d 
37 

<x.x.x > = <v.x.x > t cx.v.x > + <x.x.v > , 
1 J k 1 J k 1 J k 1 J k (11) 

% iJk 
<x x.v > = <v.x.v 

1 J k 
> + <x.v.v > 

1 J k 

+ f <xixj(Fk + qEk)> , (12) 

d 1 
x 

<x.v.v > = cv.v.v > + iii 
1 J k 1 J k 1 

<x.x (F. + qEj)> 
lk J 

+ <xivj(Fk + qEk)> , and (13) 
> 

1 
<ViVjVk> = E <vivj(Fk + qEk)> + cvivk(Fj + qE. 

J 

+ <v.v (F. + qEi)> . 
Jk 1 > 

Once again, these equations are not closed unless 
forces are linear. 

I> 

(14) 

all 

Let us make two comments about the moment equa- 
tions at any order. First we observe that the forces 
generally will have an expansion in spatial variables 
that does not truncate at finite order. Thus the 
equations for the nth moments involve all higher 
moments. If we truncate the spatial expansion of the 
forces at mth order, the nth moment equations still 
involve (n + m)th moments so that a truncation of the 
moments is still required; truncation of the forces 
produces smooth forces, and thus eliminates the more 
obvious "collisional" effects that can arise in par- 
ticle codes. Secondly, let us observe that the number 
of equations is surprisingly small: through fourth 
moments there are only 209 first-order equations (923 
through sixth moments), which is roughly the same num- 
ber as the equations of motion for 35 particles. 

Before the moment equations can be useful, we 
must discuss two problems: truncation of the equations 
and calculation of the forces. 

There is no unique truncation procedure for clos- 
ing the moment equations, of course. The simplest 
procedure is to ignore, that is, set to zero, all 
moments higher than the desired order. In general 
there is no reason to believe that this procedure 
should be very accurate. A better-motivated procedure 
is to include the relevant higher order moments but to 
ignore higher order correlations, that is, to approxi- 
mate the higher order moments as products of lower 
order moments. Again, there is no unique prescrip- 
tion, but a reasonable truncation is illustrated by 
the approximation 

<x.x.x > 2 <Xi><X.X > + <x.><x.x > + <x xX.x.> 
7 J k J k J 1 k k 1 J .(15) 

We assume that the external force, F(T,t), is 
known once the accelerator is specified. The greater 
difficulty lies in the calculation of the space-charge 
force. If we define 

p(;,t) 5 j d; f(:,;,t, , (16) 

and 

i = -‘I@ , (17) 

then the solution of Eq. (2) can be written 

e(x t) = J d;’ d’,t) 9 1; - ;#I , (18) 

where, once again, we ignore the influence of walls. 
If we define 

+ 
x :; -& ) (19) 

then it is reasonable to expand Eq. (18) as 

$(j;,t) = Ai(t)ii + Bij(t)KiXj 

+ Cijk(t)siLjik + . . . , (20) 

where we have used the summation convention, and where 

(21) 

, and (22) 

cijk = ; J $5 
r13 

( 

ii' -a2E 
ax; axi 

\ 
+ symmetric combinations . 

1 
(23) 

This expansion clearly can be carried to any order. 

We must now relate the charge density, o(z,t), to 
the moments; we will then have the right-hand sides 
of the moment equations specified entirely in terms 
of external forces and moments. 

There is no unique relation between ,p and the 
spatial moments; we must assume some model for p. 
We assume 

o(;,t) = expkFij(t)ii;j](" + exp(-131j2) 

[ (t)- ci 
!t)- - - 

xi + YijkXiXjXk + . ..I + exp(-132F2) 

C @;,;. + #I - - - - 
1J 13 

,jkLXiXjXkXL + . . . , (24) 

where 0, and I32 are constants. Roughly speaking, 

we put the second-moment information into Fij and 

insert the additional Gaussians to ensure nonnegative 
densities. If we require that the higher order 
terms, terms following a in Eq. (24), produce no 
change in the first and second moments, then the 
F;+(t) are simply related to the second moments, 

an: the ci(t), yijk(t), Kij(t), iijka(t), . . . are B- 

early related to the higher moments. 



We have now completely specified the equations to 
be solved. However, we still have three-dimensional 
integrals, as in Eq. (21)-(23), to compute. A typical 
integral that enters is 

I = J 6 exp -1,x: 
1 

2 21 

r3 
- x2x2 - x3x3 , xyx;x; , 

where hi(t) are constants in space, and m,n,p 

integers (possibly zero). A useful technique 
evaluating this integral is to "expand about 
sphere"; that is, let 

X = ${max(ii) + min(Xi)) , 

and expand 

r 

- (X3 -x,x: + . ..I . 

(25) 

are 

for 
the 

(26) 

(27) 

Each integral in this expansion now can be done analy- 
tically, and the expansion can be carried out to any 
desired accuracy. Naturally, this expansion is most 
useful for bunches that are not too long., For very 
long bunches, we cannot justify the neglect of bound- 
ary conditions, and a different treatment must be 
given. 

We have shown how to (1) derive the moment equa- 
tions to any order, (2) expand the space-charge forces 
spatially, (3) relate the space-charge forces to the 
moments of the distributions, and (4) compute analyt- 
ically the space-charge coefficients to any order in 
an expansion in nonsphericality. We have explicitly 
carried out all of these steps to fourth moments, 
including cubic terms in the forces and to cubic 
order in the nonsphericality; resultant equations 
include the effects of rf nonlinearity and have the 
potential for investigating equipartitioning. These 
equations are now being incorporated in the computer 
code, BEDLAM (Beam Dynamics in Linear &celerators by 
Foments). - 

This approach to beam dynamics by moments has a 
number of advantages: (1) it can be systematically 
extended to any order, (2) a small number of equa- 
tions results, (3) physically interesting and intui- 
tive quantities are directly computed, (4) it is fully 
three-dimensional, (5) arbitrary external forces are 
allowed, (6) space charge is computed at each time 
step, and (7) space charge is computed quite accu- 
rately with a systematic procedure for improving the 
accuracy. Finally, let us note that if the external 
structure is periodic (a transport system), the con- 
cept of a "match" can be precisely defined; we require 
all moments computed to be exactly periodic. Pre- 
cisely defining a match allows implementing numeri- 
cally a matching procedure by a Newton technique. 

Appendix 

In this appendix we illustrate the derivation of 
moment equations in more detail. 
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Let us first derive Eq. (5). Multiplying Eq. (1) 
by xi and integrating over phase space we obtain 

& I xifd:d; + I xi; - a'd:d; 
ail 

+; 1 xi(F' + q?) * af d;d; = 0 . 
a; 

(A.1) 

The first term, Tl, of Eq. (A.,) becomes 

T, = N $ <xi> . (A.21 

In the second term, T2, of Eq. (A.l) we can inte- 

grate by parts in 2 and obtain 

T2 = -J vifd:d‘; = -N<vi> . (A.3) 

If we do the ;' integration in the third term of 
Eq. (A.1) we find 

( af d; = f(m) - f(-m) = 0 . 
a? 

(A.4) 

Using Eqs. (A.2), (A.3), (A.4) in Eq. (A.l) we obtain 

& <Xi> - <Vi> = 0 , (A.5) 

which is just Eq. (5). 
Let us derive Eq. (8). Multiplying Eq. (1) by 

XiVj we get 

& I xivjfd:d; + f xivj; * af did; 
a; 

+ I xivj ;(F' + q?) * af d;d; = 0 . 
a< 

(A.61 

The first term in Eq. (A.6) is just 

N & cxivj> . (A.71 

If we integrate by parts in zthe second term, we get 

-j vjvifd;d; = -N<vivj> . (A-8) 

If we integrate by parts in ;the third term, we get 

-J xi ; (Fj + qEj)fd;d;' = - +xi(Fj + qEj)> . (A.9) 

Combining Eqs. (A.6)-(A.9) we obtain 

d tiXiVj> - <ViVj> - -lm<xi(F. 
J 

+ qEj)> = 0 , (A.10) 

which is the same as Eq. (8). 
All the other moment equations are obtained 

similarly. 


